首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
热带和中高纬地区季节内振荡的特征及其动力学诊断   总被引:3,自引:0,他引:3  
使用5年低阶全球谱模式资料,对中高纬大气和热带大气季节内振荡的动力学性质和传播特征进行了诊断研究。分析发现模式再现了大气中季节内振荡在热带和中高纬地区的传播特性以及它们之间的差异。热带大气30—60天振荡在速度势场上表现为纬向—波结构和行波特性,而在散度风场上反映了赤道西太平洋—印度洋东西向偶极子型的振荡。中高纬大气30—60天振荡表现为定常波位相和振幅的变化,即波包络的传播特征。它与中高纬地区遥相关型的转换有关,通过遥相关位相和振幅的变化,不仅完成了热带和中高纬地区之间以及热带不同区域之间的能量输送,而且通过这种能量输送过程把南、北半球中高纬地区季节内振荡联系起来。   相似文献   

2.
An atmospheric general circulation model is used in a series of three experiments to simulate the intraseasonaloscillation in the tropical atmosphere.Analyses of the model daily data show that various physical variables,from sever-al different regions,exhibit fluctuations with a spectral peak between 30 and 60 days.This represents a 30—60 dayoscillation in the tropical atmosphere and possesses several features which are consistent with observations.These in-clude a horizontal structure dominated by zonal wavenumber 1 and a vertical structure which is predominantlybaroclinic.The effect of warm SST (sea surface temperature) anomalies on the 30—60 day oscillation in the tropical atmos-phere is also simulated by prescribing global SST as observed in 1983.This has the effect of weakening the oscillationwhile at the same time the vertical structure becomes less baroclinic.The importance of cumulus convection to the propagational characteristics of this oscillation is demonstrated by acomparison of results based on different parameterizations for convection.In one case,where the maximum convectionover the Pacific is simulated to be too far east,the simulated 30—60 day oscillation shows evidence of westward propa-gation.In the second case,where the convection maximum is located near the observed position in the western Pacific,there is more clearly evidence of eastward propagation.Both results suggest that the location of maximum convection in the Pacific can have an important influence on thestrength,structure and propagation of the 30—60 day oscillation.  相似文献   

3.
In this paper, five-year simulated data from a low-resolution global spectral model with triangular trunca-lion at wavenumber 10 are analyzed in order to study dynamical features and propagation characteristics ofintraseasonal oxillations over the mid-latitudes and the tropical atmosphere. The simulations show that thereis the 30-50 day periodic oscillation in the low-resolution spectral model without non-seasonal external forcing,and spatial scale of the intraseasonal oscihations is of the globe .Further analysis finds that propagation charac-ters of intraseasonal oscillations over the mid-latitudes and the tropics are different. The 30-50 day oscillationover the tropics exhibits structure of the velocity potential wave with wavenumber 1 in the latitudinal and thecharacter of the traveling wave eastward at speed of 8 longitudes/day. However, the 30-50 day oscillationsin mid-latitude atmosphere exhibit phase and amplitude oscillation of the standing planetary waves and theyare related to transform of teleconnection patterns over the mid-latitudes. The energy is not only transferredbetween the tropics and the middle-high latitudes, but also between different regions over the tropics. Based on the analysis of 5-year band pass filtered data from a 5-layer global spectral model of Jow-ordetwith truncated wavenumber l0,investigation is done of the source of intraseasonal oscillations in the extratropicalmodel atmosphere and its mechanism. Results show that (1) the convective heat transferred eastward alongthe equator serves as the source of the intraseasonal oxillation both in the tropical and the extratropical atmos--phere; (2) the velocity-potential wave of a zonal structure of wavenumber 1 gives rise to oxillation in divergentand convergent wind fields of a dipole-form as seen from the equatorial Indian Ocean to the western Pacificduring its eastward propagation, thus indicating the oscillation in the dipole-form heat soure:e/sink pattertl; (3)the tropical heat-source oscillation is responsible for the variation in phase and intensity of the extratropicalstationary wave train, and the interaction between the oscillating low-frequency inertial gravity and stationaryRossby modes that are probably mechanisms for the oscillations ip the middle-high latitudes.  相似文献   

4.
本文用13年夏半年(5—10月)月平均风场和两年逐日风场资料研究了200hPa南亚热带东风急流的气候学特征和中期振荡过程。研究表明,南亚夏季热带东风急流显著的非季节性变动和年际差异与低纬对流层高层大尺度环流变化和南亚夏季风活动密切相关,相对于多年平均而言,存在5类异常的东风急流。 各种分析表明,热带东风带存在三种主要的中期振荡。准50天周期振荡与夏季南亚对流层上部大尺度散度场的变化相关联,表现为十分显著的向南的位相传播。准50天和25天振荡均存在显著的年际变化。准50天周期振荡系统性不强的年份,准25天周期振荡是低纬行星波的主要振荡,在东风急流区除表现为系统性向西传播外也表现为向南的位相传播。准双周振荡在东风带一般向西传播。   相似文献   

5.
CISK-rossby wave and the 30-60 Day Oscillation in the Tropics   总被引:1,自引:0,他引:1  
The 30-60 day oscillation is an important aspect of the atmospheric variance in the tropical area. A number of works have been done on this phenomenon, this article is a further one. A quasi-geostrophic linear model that consists of a two-layer free atmosphere and a well-mixed boundary layer is used to investigate the instability of intraseasonal oscillation, its propagation and vertical structures. Results show that the dynamical coupling and interaction between the barotropic and baroclinic components via boundary layer convergence / divergence are responsible for the appearance of a new kind of low-frequency wave. Such wave is very different from the traditional tropical Rossby wave. It can propagate westward and eastward. Some behaviours of it appear to resemble the observed 30-60 day oscillation mode in many aspects, such,as vertical structures, zonal and meridional propagations. Now many researchers emphasize the direct relationship between CISK-Kelvin mode and the tropical atmospheric 30-60 oscil  相似文献   

6.
The characteristic features of Indian summer monsoon (ISM) and monsoon intraseasonal oscillations (MISO) are analyzed in the 25 year simulation by the superparameterized Community Climate System Model (SP-CCSM). The observations indicate the low frequency oscillation with a period of 30–60 day to have the highest power with a dominant northward propagation, while the faster mode of MISO with a period of 10–20 day shows a stationary pattern with no northward propagation. SP-CCSM simulates two dominant quasi-periodic oscillations with periods 15–30 day and 40–70 day indicating a systematic low frequency bias in simulating the observed modes. Further, contrary to the observation, the SP-CCSM 15–30 day mode has a significant northward propagation; while the 40–70 day mode does not show prominent northward propagation. The inability of the SP-CCSM to reproduce the observed modes correctly is shown to be linked with inability of the cloud resolving model (CRM) to reproduce the characteristic heating associated with the barotropic and baroclinic vertical structures of the high-frequency and the low-frequency modes. It appears that the superparameterization in the General Circulation Model (GCM) certainly improves seasonal mean model bias significantly. There is a need to improve the CRM through which the barotropic and baroclinic modes are simulated with proper space and time distribution.  相似文献   

7.
8.
By the use of space-time spectral analysis and band-pass filter, some of the features of the medium-range Oscillations in the summer tropical easterlies (10oS-20o) at 200 hPa are investigated based on a two-year (1980 and 1982) wind (u, v) data set for the period from May to September. Space-time power spectral analysis shows that the total energy of the westward moving waves was the largest and that of the standing waves and eastward moving waves was relatively small in the 200 hPa easterlies; the total energy of the eastward moving waves was at minimum at 10oN. Three kind of the medium-range oscillations with about 50 day, 25 day and quasi-biweekly periods were found in the easterlies, which all show a remarkable interannual variation and latitudinal differences in these two years. The wave energy of zonal wind is mainly associated with the planetary waves (1-3), which all may make important contributions to the 50 day and 25 day oscillations in different years or different latitudes. The quasi-biweekly oscillation is mainly related to the synoptic waves (4-6). In equatorial region, the 50 day oscillation was dominant with a eastward phase propagation in 1982 while the dominant oscillation in 1980 was of 25day period with a westward phase propagations in 1980. Both of them are of the mode of zonal wavenumber 1. Strong westward 50 day oscillation was found in 10oN-20oN in these two years. Regular propagations of the meridional wind 50 day oscillation were also found in the easterlies.The 50 day and 25 day oscillation of zonal wind all demonstrate southward phase propagation over the region of the South Asia monsoon and northward phase propagation near interational date line, where are the climatic mean position of the tropical upper-tropospheric easterly jet and the tropical upper tropospheric trough (TUTT), respectively.  相似文献   

9.
    
The 30–60 day oscillation is an important aspect of the atmospheric variance in the tropical area. A number of works have been done on this phenomenon, this article is a further one. A quasi-geostrophic linear model that consists of a two-layer free atmosphere and a well-mixed boundary layer is used to investigate the instability of intraseasonal oscillation, its propagation and vertical structures. Results show that the dynamical coupling and interaction between the barotropic and baroclinic components via boundary layer convergence / divergence are responsible for the appearance of a new kind of low-frequency wave. Such wave is very different from the traditional tropical Rossby wave. It can propagate westward and eastward. Some behaviours of it appear to resemble the observed 30–60 day oscillation mode in many aspects, such.as vertical structures, zonal and meridional propagations. Now many researchers emphasize the direct relationship between CISK-Kelvin mode and the tropical atmospheric 30–60 oscillation. It is considered that CISK-Rossby mode should not be neglected.  相似文献   

10.
本文从赤道β平面近似下的线性化扰动方程组出发,基于第二类条件不稳定(CISK)理论,研究了热带对流层大气准40天低频振荡的动力机制。研究发现,当对流层中、上层存在较大的对流凝结加热时可激发出纬向波数为1、周期为40天左右的不稳定Kelvin波,它以每天8到11个经度的相速缓慢向东移动。由此指出,观测到的热带对流层大气30—50天的低频振荡可能正是这种由对流凝结加热所驱动的缓慢东移的Kelvin波的具体表现。这可对热带对流层大气30—50天低频振荡现象的动力机制给以初步的物理解释。   相似文献   

11.
Intraseasonal Oscillation in the Tropical Indian Ocean   总被引:1,自引:1,他引:1  
1. Introduction The intraseasonal oscillation (ISO or Madden- Julian Oscillation, MJO) in the tropical atmosphere has been studied extensively, including its existence, structure, evolution and propagation (Madden and Ju- lian, 1971; Murakami, et al., 198…  相似文献   

12.
本文使用1979年1月至1984年12月射出长波辐射(OLR)资料,对热带地区低频振荡的一些特性进行了研究,认为正常年份30—60天振荡的合成功率谱最强,El Nino年最弱。低频波活动冬夏差异较大,其年际变化大值区冬季在赤道地区,夏季位置偏北,位于印度洋和西太平洋。就六年平均而言,低频波在西太平洋及印度洋地区有明显的经向传播,赤道地区低频波的纬向传播主要集中在北半球夏季。此外,30—60天OLR滤波场的强弱与印度季风的爆发和减弱有较好的对应关系。   相似文献   

13.
30—60天大气振荡的全球特征   总被引:14,自引:6,他引:14       下载免费PDF全文
李崇银 《大气科学》1991,15(3):66-76
利用ECMWF格点资料,分析研究了大气季节内(30—60天)振荡的全球特征。30—60天振荡动能的分布表明高纬度地区要比赤道地区大得多。说明那里有较突出的30—60天振荡。中高纬度地区的30—60天振荡与热带有明显不同,垂直结构为正压模态,以纬向2—4波为主,多为向酉传播。30—60天振荡存在明显的低频遥相关,北半球主要为欧亚—太平洋(EAP)型和PNA型,南半球主要有澳洲—南非(ASA)型和环南美(RSA)型,并且在全球范围构成南北半球相互衔接的低频波列,即EAP-ASA波列和PNA-RSA波列。南北半球30—60天大气振荡有明显的相互影响,本文研究了南北半球30—60天振荡相互影响的3种主要过程。  相似文献   

14.
大气季节内振荡的活动与El Nino   总被引:13,自引:1,他引:13  
用广东省47个测站1954-1990年各月的平均气温、降水、日照时数的标准化资料分别作按时间点分解的主分量分析,取其前6个主分量作为各测站的气候特征量,用相关系数-重心法作聚类分析,作出各月、全年综合要素的气候分区。结果表明:(1)将广东各月分为有较显著差异的5个区,则冬半年(10-翌年4月)各月的分区形式较类似且规律性明显,夏半年(5-9月)各月的分区逐月变化明显,且分区形式差别较大。(2)若用6个自然季节的平均气温、降水、日照时数标准化资料分别作主分量分析,各取前3个主分量作为全年气候分区的特征量,则广东全年的气候区可分为东南沿海、西南沿海、西北内陆3个区。  相似文献   

15.
The features of 30-60-day convection oscillations over the subtropical western North Pacific (WNP) were investigated, along with the degree of tropical-subtropical linkage between the oscillations over the WNP during summer 1998. It was found that 30-60-day oscillations were extremely strong in that summer over both the subtropical and tro]~ical WNP, providing a unique opportunity to study the behavior of subtropical oscillations and their relationship to tropical oscillations. Further analyses indicated that 30-60-day oscillations propagate westwards over the subtropical WNP and reach eastern China. In addition, 30-60-day oscillations in the subtropics are affected by those over the South China Sea (SCS) and tropical WNP through two mechanisms: (1) direct propagation from the tropics into the subtropics; and (2) a seesaw pattern between the tropics and subtropics, with the latter being predominant.  相似文献   

16.
Based on multiple datasets, correlation and composite analyses, and case studies, this paper investigated possible influences of the Indian Ocean dipole (IOD) mode on the eastward propagation of intraseasonal oscillation in the tropical atmosphere. The results showed that (1) the 30-60 day outgoing longwave radiation anomalies in the southeastern Indian Ocean and the 30-60 day 850-hPa zonal wind anomalies over the equatorial central Indian Ocean were significantly correlated with the IOD index; (2) during positive IOD years, the anomalously cold water in the southeastern Indian Ocean and the 850-hPa anomalous easterlies over the equatorial central Indian Ocean might act as barriers to the continuously eastward propagation of the intraseasonal convection, which interrupts the Madden-Julian oscillation (MJO) propagation in the eastern equatorial Indian Ocean and western Pacific; and (3) during negative IOD years, the anomalously warm water in the southeastern Indian Ocean and the low-level westerly anomalies over the equatorial central Indian Ocean favor the eastward movement of MJO.  相似文献   

17.
Based on the ECMWF data(1980-1983) and others, a further inquiry on the activities and the structure feature of 30-60 day oscillation in the tropical atmosphere has been completed. The following results are obtained:There is stronger perturbation kinetic energy of 30-60 day atmospheric oscillation(AO) in the equatorial eastern Pacific. This means the equatorial eastern Pacific is a stronger activity region of 30-60 day AO in the tropics. Analyses also show that the AO system with the time scale of 30-60 days might consist of various spatial scale disturbances. The zonal propagation of 30-60 day oscillation in the tropical atmosphere is not all eastward. Some differences are found for different spatial scales, and for propagations in upper and lower tropospheres. The meridional propagation of the oscillation is even more different in the various regions and might be related to the low-frequency wave train in the atmosphere. The stronger activities of 30-60 day AO in the equatorial middle-western Pacific are related to the El Nino events and the weaker ones are correspondent to the inverse El Nino phenomena.  相似文献   

18.
Summary This paper investigates tropical-extratropical interactions over the northwestern Pacific Ocean that involve tropical cyclones and subtropical jet streaks. Another aspect of this study is to examine the relation between 6–25 day convective variability and tropical cyclones. This investigation is conducted for the fall and early winter season, with a focus on the months, October through December (OND). In addition to outgoing longwave radiation (OLR) data, we use 10 years (1985–1994) of WCRP/TOGA archive II analyses produced by ECMWF to compute equivalent temperature, e , precipitable water, W, and kinematic and kinetic energy transfer variables. These variables are composited for two classes of tropical cyclones, recurving cyclones (RCs) and non-recurving cyclones (NCRs), in order to examine the influence of tropical cyclones and baroclinic processes on changes in the jet streak intensity.We found that RCs interacted with extratropical regions during all composite days. A strong baroclinic zone developed throughout the troposphere on the north side of the composite cyclone as it propagated poleward. Between the day of recurvature, DR, and the day after recurvature, DR+1, the main band of convection shifted from the RC to a frontal band within the baroclinic zone indicating a transformation of the tropical cyclone into an extratropical one. An eastward propagating jet streak at 200 hPa, located north of the RC and in the vicinity of the baroclinic zone, increased its speed from 57 ms–1 to 79 ms–1 on DR+1. Although we could not measure the role of baroclinic processes in this regard, we were able to infer that upper-level outflow from the RC did supply momentum and energy to the jet streak.Whereas we expected tropical-extratropical interactions for the RCs, we also found evidence that NRCs that stay south of 20° N throughout their lifetime and that dissipate over Indo-China have an influence on the subtropical jet by their upper-level outflow, especially in the late OND season. The tropical (i.e., momentum) forcing did appear to cause increases in the speed of the jet after the composited storm crossed the Phillippines on the fourth day of its life cycle, D4. Concurrently, a baroclinic zone developed along the coast of southern China by about D4, but it was confined to the lower troposphere.Finally, our spectral analysis investigations for the northwestern Pacific showed significant peaks at 6–10 days and 15–20 days from late September to early December. The first peak is well known and is associated with typhoon activity. In several of the investigated autumn seasons (1987, 1989, 1992, and 1993), the second peak was clearly related to the recurrence interval of northwestern Pacific tropical cyclones. This result is in accordance with the findings of Hartmann et al. (1992). For some years of the investigation period (1985, 1986, and 1988), however, our results showed that westward propagating convective disturbances that fail to reach tropical depression strength also contribute to the power in the 15–25 day band, whereas in a few years (1990 and 1991), no OLR peak between 15 and 20 days could be found at all. Therefore, it appears that further work needs to be done with regard to the relationship between convective systems and their accompanying relationships on time scales ranging between 10 and 25 days.With 15 Figures  相似文献   

19.
用加密气象站降水资料、NCEP再分析资料以及WRF模式的精细化模拟产品资料,对2011年6月24日20时-25日20时,由强热带风暴“米雷”与西风槽结合造成的江淮区域暴雨过程进行分析和诊断.结果表明:西风槽温压场斜压性显著,强热带风暴温压场正压性显著,构成了有利于中小尺度系统和暴雨发生发展的环流背景.由强热带风暴携带而来的水汽,路程近、速度快,在暴雨区形成深厚的水汽层.暴雨区具有两个上下叠置的垂直上升运动中心,保持对水汽的深厚强抬升,维持暴雨环流系统的强度.暴雨区环境大气流场动力正、斜压分解显示,此次暴雨过程大气流场的斜压成分占显著的主导地位;暴雨开始阶段,正压动能向斜压动能的转换迅速增强,各分项和总项都达到最大值;其后的暴雨阶段,转换强度逐渐减弱,暴雨结束时各项都接近0值,甚至出现弱的斜压动能向正压动能的转换.  相似文献   

20.
Based on daily ECMWF gridpoint data of two winters during 1981-1983 including an ENSO year,propagation of low frequency oscillations(LFO) during Northern Hemisphere winters and their influences upon 30-60 day oscillations of the subtropical jet stream are studied with the statistical methods as complex empirical orthogonal function(CEOF) and so on.Results show that in the winter of a normal year(1981-1982),30-60 day oscillations in the subtropical zone are mainly in the northern and southern flanks of exit region of jet stream.In the ENSO year(1982-1983),they are mainly in the vicinity of entrance and exit regions of jet stream.Intraseasonal changes of subtropical jet stream manifested themselves as latitudinal fluctuation or longitudinal progression or regression of about 40 day period.There are marked differences between propagating passages of low frequency modes responsible for changes of subtropical jet stream in the normal year(1981-1982) and in the ENSO year(1982-1983).Changes of oscillation amplitude show obvious phases.In general,the one in late winter is stronger than that in early winter,strongest one occurs in February.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号