首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Evolution of Indian Ocean Dipole (IOD) events in 2003, 2006 and 2007 is investigated using observational and re-analysis data products. Efforts are made to understand various processes involved in three phases of IOD events; activation, maturation and termination. Three different triggers are found to activate the IOD events. In preceding months leading to the IOD evolution, the thermocline in southeastern Indian Ocean shoals by reflection of near equatorial upwelling Rossby waves at the East African coast into anomalous upwelling equatorial Kelvin waves. Strengthening (weakening) of northern (southern) portion of ITCZ in March/April and May/June of IOD years, leads to strengthening of alongshore winds along Sumatra/Java coasts. With the combined shallow thermocline and increased latent heat flux due to enhanced wind speeds, the SST in the southeastern Indian Ocean cools in following months. On intraseasonal time scales convection-suppressing phase of Madden-Julian oscillation (MJO) propagates from west to east in May/June of IOD year, and easterlies associated with this phase of MJO causes further shoaling of thermocline in southeastern Indian Ocean, through anomalous upwelling Kelvin wave. All these three mechanisms appear to be involved in initiating IOD event in 2006. On the other hand, except the strengthening/weakening of ITCZ, all other mechanisms are involved in activation of 2003 IOD event. Activation of 2007 IOD event was due to propagation of convection-suppressing MJO in May/June and strengthening of mean winds along Sumatra/Java coast from March to June through changes in convection. The IOD events matured into full-fledged events in the following months after activation, by surface heat fluxes, vertical and horizontal advection of cool waters supported by local along-shore upwelling favorable winds and remote equatorial easterly wind anomalies through excitation of upwelling Kelvin waves. Propagating MJO signals in the tropical Indian Ocean brings significant changes in evolution of IOD events on MJO time scales. Termination of 2003 and 2007 IOD events is achieved by strong convection-enhancing MJOs propagating from west to east in the tropical Indian Ocean which deepen the thermocline in the southeastern equatorial Indian Ocean. IOD event in 2006 was terminated by seasonal reversal of monsoon winds along Sumatra/Java coasts which stops the local coastal upwelling.  相似文献   

2.
夏季MJO持续异常的主要特征分析   总被引:2,自引:1,他引:1  
严欣  琚建华 《大气科学》2016,40(5):1048-1058
在MJO传播过程中,其活动中心并不总是规律地沿赤道东传。本文通过资料分析发现,夏季MJO的活动中心会出现东传停滞的情况,表现为MJO在赤道太平洋持续异常活跃或者在印度洋持续异常活跃两种形式。为更好描述MJO这种东传不明显的异常特征,本文定义了一个描述MJO持续异常的指数,并据此对夏季MJO持续异常的主要特征进行分析。通过小波分析的方法,发现夏季MJO持续异常时其振荡周期会出现缩短或变弱。通过对MJO持续异常状况下的大气环流进行合成对比分析后发现,夏季MJO的持续异常会对热带大气环流造成显著的影响。具体表现为:MJO夏季在赤道太平洋(印度洋)持续活跃的时候,赤道沃克环流减弱(增强),西太平洋哈得来环流增强(减弱),西太平洋副高位置偏北(偏南),赤道太平洋(印度洋)高层辐散且对流活跃。  相似文献   

3.
The role of spring Wyrtki jets in modulating the equatorial Indian Ocean and the regional climate is an unexplored problem. The source of interannual variability in the spring Wyrtki jets is explored in this study. The relationship between intraseasonal and interannual variability from 1958 to 2008 and its relation with Indian Summer Monsoon is further addressed. Analysis reveals that the interannual variability in spring Wyrtki jets is controlled significantly by their intraseasonal variations. These are mostly defined by a single intraseasonal event of duration 20 days or more which either strengthens or weakens the seasonal mean jet depending on its phase. The strong spring jets are driven by such intraseasonal westerly wind bursts lasting for 20-days or more, whereas the weak jets are driven by weaker intraseasonal westerlies. During the years of strong jets, the conventional westward phase propagation of Wyrtki jets is absent and instead there is an eastward phase propagation indicating the possible role of Madden Julian Oscillation (MJO) in strengthening the spring Wyrtki jets. These strong intraseasonal westerly wind bursts with eastward phase propagation during strong years are observed mainly in late spring and have implications on June precipitation over the Indian and adjoining land mass. Anomalously strong eastward jets accumulate warm water in the eastern equatorial Indian Ocean (EIO), leading to anomalous positive upper ocean heat content and supporting more local convection in the east. This induces subsidence over the Indian landmass and alters monsoon rainfall by modulating monsoon Hadley circulation. In case of weak current years such warm anomalies are absent over the eastern EIO. Variations in the jet strength are found to have strong impact on sea level anomalies, heat content, salinity and sea surface temperature over the equatorial and north Indian Ocean making it a potentially important player in the north Indian Ocean climate variability.  相似文献   

4.
The Madden–Julian oscillation (MJO) is the main component of intraseasonal variability of the tropical convection, with clear climatic impacts at an almost-global scale. Based on satellite observations, it is shown that there are two types of austral-summer MJO events (broadly defined as 30–120 days convective variability with eastward propagation of about 5 m/s). Equatorial MJO events have a period of 30–50 days and tend to be symmetric about the equator, whereas MJO events centered near 8°S tend to have a longer period of 55–100 days. The lower-frequency variability is associated with a strong upper-ocean response, having a clear signature in both sea surface temperature and its diurnal cycle. These two MJO types have different interannual variations, and are modulated by the Indian Ocean Dipole (IOD). Following a negative IOD event, the lower-frequency southern MJO variability increases, while the higher-frequency equatorial MJO strongly diminishes. We propose two possible explanations for this change in properties of the MJO. One possibility is that changes in the background atmospheric circulation after an IOD favour the development of the low-frequency MJO. The other possibility is that the shallower thermocline ridge and mixed layer depth, by enhancing SST intraseasonal variability and thus ocean–atmosphere coupling in the southwest Indian Ocean (the breeding ground of southern MJO onset), favour the lower-frequency southern MJO variability.  相似文献   

5.
The present study investigates the role of Kelvin wave propagations along the equatorial Indian Ocean during the 2006–2008 Indian Ocean Dipole (IOD). The 2006 IOD lasted for seven months, developing in May and reaching its peak in December, while the 2007 and 2008 IODs were short-lived events, beginning in early May and ending abruptly in September, with much weaker amplitudes. Associated with the above IODs, the impulses of the sea surface height (SSH) anomalies reflect the forcing from an intraseasonal time scale, which was important to the evolution of IODs in 2007 and 2008. At the thermocline depth, dominated by the propagation of Kelvin waves, the warming/cooling temperature signals could reach the surface at a particular time. When the force is strong and the local thermocline condition is favorable, the incoming Kelvin waves dramatically impact the sea surface temperature (SST) in the eastern equatorial Indian Ocean. In July 2007 and late July 2008, the downwelling Kelvin waves, triggered by the Madden-Julian Oscillation (MJO) in the eastern and central equatorial Indian Ocean, suppressed the thermocline in the Sumatra and the Java coast and terminated the IOD, which made those events short-lived and no longer persist into the boreal fall season as the canonical IOD does.  相似文献   

6.
7.
利用非线性局部Lyapunov指数和条件非线性局部Lyapunov指数定量估计了季节内印度洋-西太平洋对流涛动(IPCO)和实时多变量Madden-Julian指数(RMM指数)可预报期限,量化了季节内IPCO对S2S尺度大气可预报性的贡献,深入研究了季节内IPCO演变下S2S尺度可预报期限空间分布的变化规律。结果表明:(1)与RMM指数相比,季节内IPCO指数可预报性更强,可预报期限达到31天左右,比RMM指数高出2周以上;(2)印度洋-西太平洋区域S2S尺度大气可预报性最强,可预报期限达到30天以上,其中季节内IPCO是该地区的主要可预报性来源之一,其贡献达到6天,占总可预报期限的25%以上;(3)随着季节内IPCO的演变,印度洋-西太平洋地区S2S尺度大气可预报性有空间结构变化,表现为可预报期限异常的传播和振荡。S2S尺度大气可预报期限正负异常沿季节内IPCO传播路径,一支以赤道中西印度洋为起点北传至印度半岛,一支向东传播,经过海洋性大陆到赤道西太平洋后向北传播,到达日本南部。同时,可预报性异常的传播在在东印度洋和西太平洋表现出反向变化的特征,形成东西两极振荡,当季节内IPCO向正位相发展时,东印度洋具有更强的可预报性,西太平洋具有更弱的可预报性,反之亦然。季节内IPCO的发展(衰退)可使东印度洋(西太平洋)S2S尺度大气可预报性更强,表明模式预报技巧对此具有更大的提升空间。  相似文献   

8.
High-resolution satellite-derived data and NCEP-NCAR reanalysis data are used to investigate intraseasonal oscillations (ISO) over the tropical Indian Ocean.A composite evolution of the ISO life cycle is constructed,including the initiation,development,and propagation of rainfall anomalies over the tropical Indian Ocean.The characteristics of ISO over the tropical Indian Ocean are profoundly different before and after the onset of the Indian summer monsoon.Positive precipitation anomalies before monsoon onset appear one phase earlier than those after monsoon onset.Before monsoon onset,precipitation anomalies associated with ISO first initiate in the western tropical Indian Ocean and then propagate eastward along the equator.After monsoon onset,convective anomalies propagate northward over the Indian summer monsoon region after an initial eastward propagation over the equatorial Indian Ocean.Surface wind convergence and air-sea interaction play critical roles in initiating each new cycle of ISO convection.  相似文献   

9.
The effects of air?Csea coupling over the tropical Indian Ocean (TIO) on the eastward- and northward-propagating boreal summer intraseasonal oscillation (BSISO) are investigated by comparing a fully coupled (CTL) and a partially decoupled Indian Ocean (pdIO) experiment using SINTEX-F coupled GCM. Air?Csea coupling over the TIO significantly enhances the intensity of both the eastward and northward propagations of the BSISO. The maximum spectrum differences of the northward- (eastward-) propagating BSISO between the CTL and pdIO reach 30% (25%) of their respective climatological values. The enhanced eastward (northward) propagation is related to the zonal (meridional) asymmetry of sea surface temperature anomaly (SSTA). A positive SSTA appears to the east (north) of the BSISO convection, which may positively feed back to the BSISO convection. In addition, air?Csea coupling may enhance the northward propagation through the changes of the mean vertical wind shear and low-level specific humidity. The interannual variations of the TIO regulate the air?Csea interaction effect. Air?Csea coupling enhances (reduces) the eastward-propagating spectrum during the negative Indian Ocean dipole (IOD) mode, positive Indian Ocean basin (IOB) mode and normal years (during positive IOD and negative IOB years). Such phase dependence is attributed to the role of the background mean westerly in affecting the wind-evaporation-SST feedback. A climatological weak westerly in the equatorial Indian Ocean can be readily reversed by anomalous zonal SST gradients during the positive IOD and negative IOB events. Although the SSTA is always positive to the northeast of the BSISO convection for all interannual modes, air?Csea coupling reduces the zonal asymmetry of the low-level specific humidity and thus the eastward propagation spectrum during the positive IOD and negative IOB modes, while strengthening them during the other modes. Air?Csea coupling enhances the northward propagation under all interannual modes due to the persistent westerly monsoon flow over the northern Indian Ocean.  相似文献   

10.
The summer monsoon rainfall over India exhibits strong intraseasonal variability. Earlier studies have identified Madden Julian Oscillation (MJO) as one of the most influencing factors of the intraseasonal variability of the monsoon rainfall. In this study, using India Meteorological Department (IMD) high resolution daily gridded rainfall data and Wheeler?CHendon MJO indices, the intra-seasonal variation of daily rainfall distribution over India associated with various Phases of eastward propagating MJO life cycle was examined to understand the mechanism linking the MJO to the intraseasonal variability. During MJO Phases of 1 and 2, formation of MJO associated positive convective anomaly over the equatorial Indian Ocean activated the oceanic tropical convergence zone (OTCZ) and the resultant changes in the monsoon circulation caused break monsoon type rainfall distribution. Associated with this, negative convective anomalies over monsoon trough zone region extended eastwards to date line indicating weaker than normal northern hemisphere inter tropical convergence zone (ITCZ). The positive convective anomalies over OTCZ and negative convective anomalies over ITCZ formed a dipole like pattern. Subsequently, as the MJO propagated eastwards to west equatorial Pacific through the maritime continent, a gradual northward shift of the OTCZ was observed and negative convective anomalies started appearing over equatorial Indian Ocean. During Phase 4, while the eastwards propagating MJO linked positive convective anomalies activated the eastern part of the ITCZ, the northward propagating OTCZ merged with monsoon trough (western part of the ITCZ) and induced positive convective anomalies over the region. During Phases 5 and 6, the dipole pattern in convective anomalies was reversed compared to that during Phases 1 and 2. This resulted active monsoon type rainfall distribution over India. During the subsequent Phases (7 and 8), the convective and lower tropospheric anomaly patterns were very similar to that during Phase 1 and 2 except for above normal convective anomalies over equatorial Indian Ocean. A general decrease in the rainfall was also observed over most parts of the country. The associated dry conditions extended up to northwest Pacific. Thus the impact of the MJO on the monsoon was not limited to the Indian region. The impact was rather felt over larger spatial scale extending up to Pacific. This study also revealed that the onset of break and active events over India and the duration of these events are strongly related to the Phase and strength of the MJO. The break events were relatively better associated with the strong MJO Phases than the active events. About 83% of the break events were found to be set in during the Phases 7, 8, 1 and 2 of MJO with maximum during Phase 1 (40%). On the other hand, about 70% of the active events were set in during the MJO Phases of 3 to 6 with maximum during Phase 4 (21%). The results of this study indicate an opportunity for using the real time information and skillful prediction of MJO Phases for the prediction of break and active conditions which are very crucial for agriculture decisions.  相似文献   

11.
采用一种基于降水异常追踪MJO(Madden–Julian Oscillation)东传的MJO识别方法(MJO Tracking)评估了参与MJOTF/GASS(MJO Task Force/Global Energy and Water Cycle Experiment Atmospheric System Study)全球模式比较计划的全海气耦合模式(CNRM-CM)、半海气耦合模式(CNRM-ACM)和大气模式(CNRM-AM)1991~2010年模拟MJO的能力,探究了海气耦合过程对模式模拟MJO能力的影响机理。CNRM-CM模式模拟的MJO结构更加接近观测,该模式不仅具有最高的MJO生成频率,也能够模拟较强的MJO强度以及较远的传播距离。海气耦合过程会造成CNRM-CM和CNRM-ACM模式中印度洋—太平洋暖池区域海温气候态的冷偏差。但是这种海温气候态的偏差基本没有改变模式模拟MJO的能力。CNRM-CM中MJO对流中心东(西)侧存在较强的季节内尺度海温暖(冷)异常,纬向梯度明显,而CNRM-ACM和CNRM-AM中不存在这样的海温东西不对称结构。结果表明在CNRM模式中海气耦合过程调控模式海温季节内尺度变率对模式MJO模拟能力的影响比调控模式海温气候态更加重要。  相似文献   

12.
Boreal summer intraseasonal (30–50 day) variability (BSISV) over the Asian monsoon region is more complex than its boreal winter counterpart, the Madden–Julian oscillation (MJO), since it also exhibits northward and northwestward propagating convective components near India and over the west Pacific. Here we analyze the BSISV in the CMIP3 and two CMIP2+ coupled ocean–atmosphere models. Though most models exhibit eastward propagation of convective anomalies over the Indian Ocean, difficulty remains in simulating the life cycle of the BSISV, as few represent its eastward extension into the western/central Pacific. As such, few models produce statistically significant anomalies that comprise the northwest to southeast tilted convection, which results from the forced Rossby waves that are excited by the near-equatorial convective anomalies. Our results indicate that it is a necessary, but not sufficient condition, that the locations the time-mean monsoon heat sources and the easterly wind shear be simulated correctly in order for the life cycle of the BSISV to be represented realistically. Extreme caution is needed when using metrics, such as the pattern correlation, for assessing the fidelity of model performance, as models with the most physically realistic BSISV do not necessarily exhibit the highest pattern correlations with observations. Furthermore, diagnostic latitude-time plots to evaluate the northward propagation of convection from the equator to India and the Bay of Bengal also need to be used with caution. Here, incorrectly representing extratropical–tropical interactions can give rise to “apparent” northward propagation when none exists in association with the eastward propagating equatorial convection. Despite these cautions, the use of multiple cross-checking diagnostics enables the fidelity of the simulation of the BSISV to be meaningfully assessed.  相似文献   

13.
MJO对我国东部春季降水影响的分析   总被引:12,自引:0,他引:12  
利用澳大利亚气象局的MJO(Madden-Julian Oscillation)指数,通过位相合成及对比分析研究了MJO对我国东部春季降水的影响.研究表明,当MJO传播至中东印度洋时,我国长江中下游地区的春季降水为正异常,当其进一步东传至中南半岛-印尼群岛一带时,我国华南地区的春季降水为正异常,而在其他活动阶段不利于我国东部的春季降水.对比分析表明,MJO的活动主要通过引起大尺度环流异常、对流层中低层涡度及水汽输送的异常,进而对我国东部春季降水产生明显的影响.  相似文献   

14.
MJO活动对云南5月降水的影响   总被引:5,自引:3,他引:2  
李汀  严欣  琚建华 《大气科学》2012,36(6):1101-1111
本文分析了1979~2008年5月MJO(Madden and Julian Oscillation)不同位相上大尺度环流对流和水汽输送的异常情况及其对云南5月降水的影响。按MJO活动中心位置从西向东分为8个位相, 在不同位相上, 云南5月降水呈现出明显的差异:第4~6位相(MJO对流中心位于赤道印度洋中部至西太平洋)降水偏多, 而第7~8位相(赤道太平洋中部以东)和第1~3位相(赤道印度洋中西部)降水偏少, 其中以第6位相的降水正异常和第2位相的负异常最为显著。在MJO 1~8位相中, 对流主体从热带印度洋东移。在第1~3位相, 孟加拉湾还未形成西南向水汽输送, 而云南又处于水汽辐散区, 降水较少;第4位相时对流主体到达90°N附近, 部分对流云系向孟加拉湾北传, 并在孟加拉湾生成气旋性环流, 向云南输送水汽, 云南降水增多;第5位相时对流主体传到南海, 部分对流云系在南海北传, 同时在南海形成北传的气旋性环流;第6位相时赤道MJO对流主体虽然东移出孟加拉湾, 但孟加拉湾和南海的两个气旋性环流依然继续北传, 孟加拉湾气旋东部的西南风和南海气旋西部的东北风在云南交汇, 云南被强烈的水汽辐合区控制, 降水最充沛。第7~8位相时, 对流主体减弱, 东移到南海和西太平洋一带, 孟加拉湾转向为偏北风, 停止向云南输送水汽, 且云南处于水汽辐散区控制, 降水偏少。因此, MJO主体在东传过程中, 激发了热带对流在孟加拉湾和南海两条通道上的北传, 强盛的水汽输送和两个海区气旋环流的有利配置是造成云南5月降水的重要原因。  相似文献   

15.
El Ni?o Southern Oscillation (ENSO) and given phases of the Madden?CJulian Oscillation (MJO) show similar regional signatures over the Equatorial Indian Ocean, consisting in an enhancement or reversing of the convective and dynamic zonal gradients between East Africa and the Maritime Continent of Indonesia. This study analyses how these two modes of variability add or cancel their effects at their respective timescales, through an investigation of the equatorial cellular circulations over the central Indian Ocean. Results show that (1) the wind shear between the lower and upper troposphere is related to marked regional rainfall anomalies and is embedded in larger-scale atmospheric configurations, involving the Southern Oscillation; (2) the intraseasonal (30?C60?days) and interannual (4?C5?years) timescales are the most energetic frequencies that modulate these circulations, confirming the implication of the MJO and ENSO; (3) extreme values of the Indian Ocean wind shear result from the combination of El Ni?o and the MJO phase enhancing atmospheric convection over Africa, or La Ni?a and the MJO phase associated with convective activity over the Maritime Continent. Consequences for regional rainfall anomalies over East Africa and Indonesia are then discussed.  相似文献   

16.
MJO prediction in the NCEP Climate Forecast System version 2   总被引:3,自引:0,他引:3  
The Madden–Julian Oscillation (MJO) is the primary mode of tropical intraseasonal climate variability and has significant modulation of global climate variations and attendant societal impacts. Advancing prediction of the MJO using state of the art observational data and modeling systems is thus a necessary goal for improving global intraseasonal climate prediction. MJO prediction is assessed in the NOAA Climate Forecast System version 2 (CFSv2) based on its hindcasts initialized daily for 1999–2010. The analysis focuses on MJO indices taken as the principal components of the two leading EOFs of combined 15°S–15°N average of 200-hPa zonal wind, 850-hPa zonal wind and outgoing longwave radiation at the top of the atmosphere. The CFSv2 has useful MJO prediction skill out to 20 days at which the bivariate anomaly correlation coefficient (ACC) drops to 0.5 and root-mean-square error (RMSE) increases to the level of the prediction with climatology. The prediction skill also shows a seasonal variation with the lowest ACC during the boreal summer and highest ACC during boreal winter. The prediction skills are evaluated according to the target as well as initial phases. Within the lead time of 10 days the ACC is generally greater than 0.8 and RMSE is less than 1 for all initial and target phases. At longer lead time, the model shows lower skills for predicting enhanced convection over the Maritime Continent and from the eastern Pacific to western Indian Ocean. The prediction skills are relatively higher for target phases when enhanced convection is in the central Indian Ocean and the central Pacific. While the MJO prediction skills are improved in CFSv2 compared to its previous version, systematic errors still exist in the CFSv2 in the maintenance and propagation of the MJO including (1) the MJO amplitude in the CFSv2 drops dramatically at the beginning of the prediction and remains weaker than the observed during the target period and (2) the propagation in the CFSv2 is too slow. Reducing these errors will be necessary for further improvement of the MJO prediction.  相似文献   

17.
In this paper, five-year simulated data from a low-resolution global spectral model with triangular trunca-lion at wavenumber 10 are analyzed in order to study dynamical features and propagation characteristics ofintraseasonal oxillations over the mid-latitudes and the tropical atmosphere. The simulations show that thereis the 30-50 day periodic oscillation in the low-resolution spectral model without non-seasonal external forcing,and spatial scale of the intraseasonal oscihations is of the globe .Further analysis finds that propagation charac-ters of intraseasonal oscillations over the mid-latitudes and the tropics are different. The 30-50 day oscillationover the tropics exhibits structure of the velocity potential wave with wavenumber 1 in the latitudinal and thecharacter of the traveling wave eastward at speed of 8 longitudes/day. However, the 30-50 day oscillationsin mid-latitude atmosphere exhibit phase and amplitude oscillation of the standing planetary waves and theyare related to transform of teleconnection patterns over the mid-latitudes. The energy is not only transferredbetween the tropics and the middle-high latitudes, but also between different regions over the tropics. Based on the analysis of 5-year band pass filtered data from a 5-layer global spectral model of Jow-ordetwith truncated wavenumber l0,investigation is done of the source of intraseasonal oscillations in the extratropicalmodel atmosphere and its mechanism. Results show that (1) the convective heat transferred eastward alongthe equator serves as the source of the intraseasonal oxillation both in the tropical and the extratropical atmos--phere; (2) the velocity-potential wave of a zonal structure of wavenumber 1 gives rise to oxillation in divergentand convergent wind fields of a dipole-form as seen from the equatorial Indian Ocean to the western Pacificduring its eastward propagation, thus indicating the oscillation in the dipole-form heat soure:e/sink pattertl; (3)the tropical heat-source oscillation is responsible for the variation in phase and intensity of the extratropicalstationary wave train, and the interaction between the oscillating low-frequency inertial gravity and stationaryRossby modes that are probably mechanisms for the oscillations ip the middle-high latitudes.  相似文献   

18.
Northward propagation in summer and eastward propagation in winter are two distinguished features of tropical intraseasonal oscillation(TISO) over the equatorial Indian Ocean.According to numerical modeling results,under a global warming scenario,both propagations were intensified.The enhanced northward propagation in summer can be attributed to the enhanced atmosphere-ocean interaction and the strengthened mean southerly wind;and the intensified eastward propagation in winter is associated with the enhanced convection-wind coupling process and the strengthened equatorial Kevin wave.Future changes of TISO propagations need to be explored in more climate models.  相似文献   

19.
The Madden-Julian oscillation (MJO) dominates tropical variability on timescales of 30–70 days. During the boreal winter/spring, it is manifested as an eastward propagating disturbance, with a strong convective signature over the eastern hemisphere. The space–time structure of the MJO is analyzed using simulations with the ECHAM4 atmospheric general circulation model run with observed monthly mean sea-surface temperatures (SSTs), and coupled to three different ocean models. The coherence of the eastward propagation of MJO convection is sensitive to the ocean model to which ECHAM4 is coupled. For ECHAM4/OPYC and ECHO-G, models for which ~100 years of daily data is available, Monte Carlo sampling indicates that their metrics of eastward propagation are different at the 1% significance level. The flux-adjusted coupled simulations, ECHAM4/OPYC and ECHO-G, maintain a more realistic mean-state, and have a more realistic MJO simulation than the nonadjusted scale interaction experiment (SINTEX) coupled runs. The SINTEX model exhibits a cold bias in Indian Ocean and tropical West Pacific Ocean sea-surface temperature of ~0.5°C. This cold bias affects the distribution of time-mean convection over the tropical eastern hemisphere. Furthermore, the eastward propagation of MJO convection in this model is not as coherent as in the two models that used flux adjustment or when compared to an integration of ECHAM4 with prescribed observed SST. This result suggests that simulating a realistic basic state is at least as important as air–sea interaction for organizing the MJO. While all of the coupled models simulate the warm (cold) SST anomalies that precede (succeed) the MJO convection, the interaction of the components of the net surface heat flux that lead to these anomalies are different over the Indian Ocean. The ECHAM4/OPYC model in which the atmospheric model is run at a horizontal resolution of T42, has eastward propagating zonal wind anomalies and latent heat flux anomalies. However, the integrations with ECHO-G and SINTEX, which used T30 atmospheres, produce westward propagation of the latent heat flux anomalies, contrary to reanalysis. It is suggested that the differing ability of the models to represent the near-surface westerlies over the Indian Ocean is related to the different horizontal resolutions of the atmospheric model employed.  相似文献   

20.
THE IMPACTS OF MADDEN-JULIAN OSCILLATION ON SPRING RAINFALL IN EAST CHINA   总被引:3,自引:1,他引:2  
Phase composite analyses are conducted to investigate the possible effect of the Madden–Julian oscillation(MJO)on the spring rainfall anomalies in East China by using the Real-time Multivariate MJO(RMM)index from Australian Meteorological Bureau.The results show that the rainfall anomalies over the mid-and lower-valley of Yangtze River are positive when the MJO shifts eastward to the mid-and eastern-Indian Ocean,and anomalous precipitation over South China are positive when the MJO moves further eastward to the maritime continent,whereas spring rainfall anomalies over East China are negative in the other MJO episodes.The MJO impacts on the precipitation over East China result from the changes in large-scale atmospheric circulation as well as vorticity and water vapor transportation in the mid-and lower-troposphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号