首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   73篇
  免费   0篇
地球物理   10篇
地质学   48篇
海洋学   1篇
天文学   8篇
自然地理   6篇
  2022年   1篇
  2021年   2篇
  2017年   3篇
  2015年   1篇
  2014年   1篇
  2013年   4篇
  2012年   1篇
  2010年   3篇
  2009年   2篇
  2008年   3篇
  2007年   7篇
  2006年   2篇
  2005年   3篇
  2004年   1篇
  2003年   3篇
  2002年   3篇
  2001年   8篇
  2000年   3篇
  1999年   6篇
  1998年   3篇
  1997年   2篇
  1995年   2篇
  1994年   3篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1987年   2篇
  1986年   1篇
排序方式: 共有73条查询结果,搜索用时 15 毫秒
1.
Sediment successions in coastal cliffs around Mezen Bay, southeastern White Sea, record an unusually detailed history of former glaciations, interstadial marine and fluvial events from the Weichselian. A regional glaciation model for the Weichselian is based on new data from the Mezen Bay area and previously published data from adjacent areas. Following the Mikulinian (Eemian) interglacial a shelf‐centred glaciation in the Kara Sea is reflected in proglacial conditions at 100–90 ka. A local ice‐cap over the Timan ridge existed between 75 and 65 ka. Renewed glaciation in the Kara Sea spread southwestwards around 60 ka only, interrupted by a marine inundation, before it advanced to its maximum position at about 55–50 ka. After a prolonged ice‐free period, the Scandinavian ice‐sheet invaded the area from the west and terminated east of Mezen Bay about 17 ka. The previously published evidence of a large ice‐dammed lake in the central Arkhangelsk region, Lake Komi, finds no support in this study. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
2.
Beach and shoreface sediments deposited in the more than 800-km long ice-dammed Lake Komi in northern European Russia have been investigated and dated. The lake flooded the lowland areas between the Barents–Kara Ice Sheet in the north and the continental drainage divide in the south. Shoreline facies have been dated by 18 optical stimulated luminescence (OSL) dates, most of which are closely grouped in the range 80–100 ka, with a mean of 88±3 ka. This implies that that the Barents–Kara Ice Sheet had its Late Pleistocene maximum extension during the Early Weichselian, probably in the cold interval (Rederstall) between the Brørup and Odderade interstadials of western Europe, correlated with marine isotope stage 5b. This is in strong contrast to the Scandinavian and North American ice sheets, which had their maxima in isotope stage 2, about 20 ka. Field and air photo interpretations suggest that Lake Komi was dammed by the ice advance, which formed the Harbei–Harmon–Sopkay Moraines. These has earlier been correlated with the Markhida moraine across the Pechora River Valley and its western extension. However, OSL dates on fluvial sediments below the Markhida moraine have yielded ages as young as 60 ka. This suggests that the Russian mainland was inundated by two major ice sheet advances from the Barents–Kara seas after the last interglacial: one during the Early Weichselian (about 90 ka) that dammed Lake Komi and one during the Middle Weichselian (about 60 ka). Normal fluvial drainage prevailed during the Late Weichselian, when the ice front was located offshore.  相似文献   
3.
This paper presents a quantitative reconstruction of the European late Pleistocene paleoclimate based on 72 rodent assemblages of five sequences from France, Germany and Bulgaria, covering the last interglacial-glacial cycle. They show a pattern of severe changes in temperature, with reduced precipitation during the coldest periods. A tentative correlation between the isotopic and palynological records and the paleotemperature changes is shown. These changes are consistent with variations in atmospheric circulation patterns in response to an expanding-retracting Fennoscandian ice-sheet. They can be attributed to the enhancement-weakening of the Scandinavian-Polar anticyclone and its associated dry winds, the south-north shifting of the North Atlantic Polar Front, and the varying supply of moist air from the Atlantic. Qualitative paleoenvironmental analysis shows broadleaved-deciduous forests in France and Bulgaria during most of the studied period. Taiga and tundra appeared in eastern France during the lower Würm. The German sequence indicates the presence of coniferous forests. These results are broadly consistent with other paleobiological records (mammalian, avian and insect faunas, isotopic record in dental tissue, palynology). The main discrepancies with the paleoclimate inferred from the palynological record are found during the coldest periods and are probably due to the interaction between vegetation, climate, and atmospheric CO2 levels.  相似文献   
4.
The Amiens-Renancourt 1 site recently yielded one of the most important Upper Palaeolithic human occupations of northern France by the number of flint artefacts and especially by the presence of Venus figurines. All the material comes from a single archaeological layer located in a tundra gley bracketed by loess units. A multi-proxy study combining a detailed stratigraphy, luminescence and radiocarbon datings and high-resolution (5 cm per sample) grain size and molluscan analyses was therefore carried out to reconstruct and date the associated environmental changes and to determine the exact context of the human occupation. The chronological frame thus established supports the correlations of the archaeology-bearing tundra gley and of an underlying arctic brown soil with Greenland interstadials GI-4 and GI-3. Composition changes in the molluscan population enabled the identification of transitional and optimum phases and sub-phases within these two pedogenetic horizons. A conceptual correlation model linking molluscan phases with millennial-scale variations of Greenland ice-core and Sieben Hengste speleothem climate records is proposed. The Human occupation appears contemporaneous to the end of the stadial–interstadial transition of GI-3. Synchronous in Amiens-Renancourt 1 and Nussloch, subsequent micro-gleys may also result from a regional/global forcing. Such a level of detail is unprecedented in a loess sequence.  相似文献   
5.
6.
Predicting the future response of ice sheets to climate warming and rising global sea level is important but difficult. This is especially so when fast-flowing glaciers or ice streams, buffered by ice shelves, are grounded on beds below sea level. What happens when these ice shelves are removed? And how do the ice stream and the surrounding ice sheet respond to the abruptly altered boundary conditions? To address these questions and others we present new geological, geomorphological, geophysical and geochronological data from the ice-stream-dominated NW sector of the last British–Irish Ice Sheet (BIIS). The study area covers around 45 000 km2 of NW Scotland and the surrounding continental shelf. Alongside seabed geomorphological mapping and Quaternary sediment analysis, we use a suite of over 100 new absolute ages (including cosmogenic-nuclide exposure ages, optically stimulated luminescence ages and radiocarbon dates) collected from onshore and offshore, to build a sector-wide ice-sheet reconstruction combining all available evidence with Bayesian chronosequence modelling. Using this information we present a detailed assessment of ice-sheet advance/retreat history, and the glaciological connections between different areas of the NW BIIS sector, at different times during the last glacial cycle. The results show a highly dynamic, partly marine, partly terrestrial, ice-sheet sector undergoing large size variations in response to sub-millennial-scale climatic (Dansgaard–Oeschger) cycles over the last 45 000 years. Superimposed on these trends we identify internally driven instabilities, operating at higher frequency, conditioned by local topographic factors, tidewater dynamics and glaciological feedbacks during deglaciation. Specifically, our new evidence indicates extensive marine-terminating ice-sheet glaciation of the NW BIIS sector during Greenland Stadials 12 to 9 – prior to the main ‘Late Weichselian’ ice-sheet glaciation. After a period of restricted glaciation, in Greenland Interstadials 8 to 6, we find good evidence for rapid renewed ice-sheet build-up in NW Scotland, with the Minch ice-stream terminus reaching the continental shelf edge in Greenland Stadial 5, perhaps only briefly. Deglaciation of the NW sector took place in numerous stages. Several grounding-zone wedges and moraines on the mid- and inner continental shelf attest to significant stabilizations of the ice-sheet grounding line, or ice margin, during overall retreat in Greenland Stadials 3 and 2, and to the development of ice shelves. NW Lewis was the first substantial present-day land area to deglaciate, in the first half of Greenland Stadial 3 at a time of globally reduced sea-level c. 26 kabp , followed by Cape Wrath at c. 24 kabp. The topographic confinement of the Minch straits probably promoted ice-shelf development in early Greenland Stadial 2, providing the ice stream with additional support and buffering it somewhat from external drivers. However, c. 20–19 kabp , as the grounding-line migrated into shoreward deepening water, coinciding with a marked change in marine geology and bed strength, the ice stream became unstable. We find that, once underway, grounding-line retreat proceeded in an uninterrupted fashion with the rapid loss of fronting ice shelves – first in the west, then the east troughs – before eventual glacier stabilization at fjord mouths in NW Scotland by ~17 kabp. Around the same time, ~19–17 kabp , ice-sheet lobes readvanced into the East Minch – possibly a glaciological response to the marine-instability-triggered loss of adjacent ice stream (and/or ice shelf) support in the Minch trough. An independent ice cap on Lewis also experienced margin oscillations during mid-Greenland Stadial 2, with an ice-accumulation centre in West Lewis existing into the latter part of Heinrich Stadial 1. Final ice-sheet deglaciation of NW mainland Scotland was punctuated by at least one other coherent readvance at c. 15.5 kabp , before significant ice-mass losses thereafter. At the glacial termination, c. 14.5 kabp , glaciers fed outwash sediment to now-abandoned coastal deltas in NW mainland Scotland around the time of global Meltwater Pulse 1A. Overall, this work on the BIIS NW sector reconstructs a highly dynamic ice-sheet oscillating in extent and volume for much of the last 45 000 years. Periods of expansive ice-sheet glaciation dominated by ice-streaming were interspersed with periods of much more restricted ice-cap or tidewater/fjordic glaciation. Finally, this work indicates that the role of ice streams in ice-sheet evolution is complex but mechanistically important throughout the lifetime of an ice sheet – with ice streams contributing to the regulation of ice-sheet health but also to the acceleration of ice-sheet demise via marine ice-sheet instabilities.  相似文献   
7.
8.
9.
Weichselian geomorphological and fluvial evolution has been recorded in the valley fill of the Reusel, a small tributary of the lower Maas river. It has been studied by means of borehole sections. A first deep incision into the substratum occurred during the Early Weichselian-Lower Pleniglacial. This was followed by aggradation, at first by a braided river, at a later date by a meandering river, dating respectively from the Lower and Middle Pleniglacial. The Upper Pleniglacial aggradation again points to a braided river system. The end of the Pleniglacial is characterized by aeolian infilling of the valley and decreasing carrying capacity of the river.  相似文献   
10.
This paper provides insight into the fate of Late Weichselian and Early Holocene sediments accumulated in the German sector of the southern North Sea. A combination of optically stimulated luminescence (OSL) dating and radiocarbon dating was applied to set up the chronology. Seven cores were studied to obtain ten quartz OSL samples and ten radiocarbon samples. The core locations were chosen along a southeast to northwest transect along the western side of the Elbe palaeovalley, giving a good coverage of the entire German North Sea area. All samples for OSL dating showed a significant scatter in the equivalent dose (De) distribution of quartz due to heterogeneous bleaching. The Minimum Age Model (MAM-3) was found to be the most suitable to extract true burial ages. It was inferred from the study that sedimentation did still occur during the late deglaciation period in many areas. These are mainly Late Weichselian glaciofluvial or glaciolacustrine sediments directly overlain by early Holocene fluvial and/or transgressive deposits and followed by modern marine sands. However, considerable late Weichselian erosion or a possible period of non-deposition was observed in the highland area to the northeast of the Dogger Bank and a small discontinuity in the near-shore region was noticed, probably due to early Holocene fluvial erosion. Relicts of a palaeo-river bank or terrace were identified in core 14VC to the east of the Dogger Bank. A possible interpretation of the Pleistocene-Holocene interface along the core transect is provided based on lithology and measured OSL and radiocarbon ages.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号