首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   62篇
  免费   2篇
测绘学   1篇
地球物理   5篇
地质学   41篇
海洋学   5篇
天文学   10篇
自然地理   2篇
  2021年   4篇
  2019年   1篇
  2017年   2篇
  2016年   1篇
  2013年   3篇
  2011年   3篇
  2008年   3篇
  2007年   4篇
  2006年   2篇
  2005年   2篇
  2003年   4篇
  2001年   6篇
  2000年   5篇
  1999年   2篇
  1998年   4篇
  1997年   1篇
  1996年   2篇
  1995年   1篇
  1994年   4篇
  1992年   2篇
  1991年   1篇
  1989年   1篇
  1984年   1篇
  1982年   1篇
  1975年   3篇
  1971年   1篇
排序方式: 共有64条查询结果,搜索用时 15 毫秒
1.
A molecular dynamics simulation of quartz at different temperatures both in the a and in the phase has been conducted. The - phase transition could be observed. A phonon analysis of the -phase confirms and rounds out in a quantitative way the origin of the incommensurate (ic) modulated phase. In particular it traces the optic soft mode at becoming (to a good approximation) a so-called rigid unit mode (RUM) at q0, and elucidates its coupling to the transverse acoustic mode which precipitates the incommensurate transition. This success underpins and illuminates the concept of RUMs and their role in structural phase transitions.  相似文献   
2.
The Blake Outer Ridge is a 480–kilometer long linear sedimentary drift ridge striking perpendicular to the North American coastline. By modeling free-air gravity anomalies we tested for the presence of a crustal feature that may control the location and orientation of the Blake Outer Ridge. Most of our crustal density models that match observed gravity anomalies require an increase in oceanic crustal thickness of 1–3 km on the southwest side of the Blake Outer Ridge relative to the northeast side. Most of these models also require 1–4 km of crustal thinning in zone 20–30 km southwest of the crest of the Blake Outer Ridge. Although these features are consistent with the structure of oceanic fracture zones, the Blake Outer Ridge is not parallel to adjacent known fracture zones. Magnetic anomalies suggest that the ocean crust beneath this feature formed during a period of mid-ocean ridge reorganization, and that the Blake Outer Ridge may be built upon the bathymetric expression of an oblique extensional feature associated with ridge propagation. It is likely that the orientation of this trough acted as a catalyst for sediment deposition with the start of the Western Boundary Undercurrent in the mid-Oligocene.  相似文献   
3.
Ecosystem effects of fishing in kelp forest communities   总被引:6,自引:0,他引:6  
  相似文献   
4.
 As part of a wider study of the nature and origins of cation order–disorder in micas, a variety of computational techniques have been used to investigate the nature of tetrahedral and octahedral ordering in phengite, K2 [6](Al3Mg)[4](Si7Al)O20(OH)4. Values of the atomic exchange interaction parameters J n used to model the energies of order–disorder were calculated. Both tetrahedral Al–Si and octahedral Al–Mg ordering were studied and hence three types of interaction parameter were necessary: for T–T, O–O and T–O interactions (where T denotes tetrahedral sites and O denotes octahedral sites). Values for the T–T and O–O interactions were taken from results on other systems, whilst we calculated new values for the T–O interactions. We have demonstrated that modelling the octahedral and tetrahedral sheets alone and independently produces different results from modelling a whole T–O–T layer, hence justifying the inclusion of the T–O interactions. Simulations of a whole T–O–T layer of phengite indicated the presence of short-range order, but no long-range order was observed. Received: 8 August 2002 / Accepted: 14 February 2003 Acknowledgements The authors are grateful to EPSRC (EJP) and the Royal Society (CIS) for financial support. Monte Carlo simulations were performed on the Mineral Physics Group's Beowulf cluster and the University of Cambridge's High Performance Computing Facility.  相似文献   
5.
Predicting the future response of ice sheets to climate warming and rising global sea level is important but difficult. This is especially so when fast-flowing glaciers or ice streams, buffered by ice shelves, are grounded on beds below sea level. What happens when these ice shelves are removed? And how do the ice stream and the surrounding ice sheet respond to the abruptly altered boundary conditions? To address these questions and others we present new geological, geomorphological, geophysical and geochronological data from the ice-stream-dominated NW sector of the last British–Irish Ice Sheet (BIIS). The study area covers around 45 000 km2 of NW Scotland and the surrounding continental shelf. Alongside seabed geomorphological mapping and Quaternary sediment analysis, we use a suite of over 100 new absolute ages (including cosmogenic-nuclide exposure ages, optically stimulated luminescence ages and radiocarbon dates) collected from onshore and offshore, to build a sector-wide ice-sheet reconstruction combining all available evidence with Bayesian chronosequence modelling. Using this information we present a detailed assessment of ice-sheet advance/retreat history, and the glaciological connections between different areas of the NW BIIS sector, at different times during the last glacial cycle. The results show a highly dynamic, partly marine, partly terrestrial, ice-sheet sector undergoing large size variations in response to sub-millennial-scale climatic (Dansgaard–Oeschger) cycles over the last 45 000 years. Superimposed on these trends we identify internally driven instabilities, operating at higher frequency, conditioned by local topographic factors, tidewater dynamics and glaciological feedbacks during deglaciation. Specifically, our new evidence indicates extensive marine-terminating ice-sheet glaciation of the NW BIIS sector during Greenland Stadials 12 to 9 – prior to the main ‘Late Weichselian’ ice-sheet glaciation. After a period of restricted glaciation, in Greenland Interstadials 8 to 6, we find good evidence for rapid renewed ice-sheet build-up in NW Scotland, with the Minch ice-stream terminus reaching the continental shelf edge in Greenland Stadial 5, perhaps only briefly. Deglaciation of the NW sector took place in numerous stages. Several grounding-zone wedges and moraines on the mid- and inner continental shelf attest to significant stabilizations of the ice-sheet grounding line, or ice margin, during overall retreat in Greenland Stadials 3 and 2, and to the development of ice shelves. NW Lewis was the first substantial present-day land area to deglaciate, in the first half of Greenland Stadial 3 at a time of globally reduced sea-level c. 26 kabp , followed by Cape Wrath at c. 24 kabp. The topographic confinement of the Minch straits probably promoted ice-shelf development in early Greenland Stadial 2, providing the ice stream with additional support and buffering it somewhat from external drivers. However, c. 20–19 kabp , as the grounding-line migrated into shoreward deepening water, coinciding with a marked change in marine geology and bed strength, the ice stream became unstable. We find that, once underway, grounding-line retreat proceeded in an uninterrupted fashion with the rapid loss of fronting ice shelves – first in the west, then the east troughs – before eventual glacier stabilization at fjord mouths in NW Scotland by ~17 kabp. Around the same time, ~19–17 kabp , ice-sheet lobes readvanced into the East Minch – possibly a glaciological response to the marine-instability-triggered loss of adjacent ice stream (and/or ice shelf) support in the Minch trough. An independent ice cap on Lewis also experienced margin oscillations during mid-Greenland Stadial 2, with an ice-accumulation centre in West Lewis existing into the latter part of Heinrich Stadial 1. Final ice-sheet deglaciation of NW mainland Scotland was punctuated by at least one other coherent readvance at c. 15.5 kabp , before significant ice-mass losses thereafter. At the glacial termination, c. 14.5 kabp , glaciers fed outwash sediment to now-abandoned coastal deltas in NW mainland Scotland around the time of global Meltwater Pulse 1A. Overall, this work on the BIIS NW sector reconstructs a highly dynamic ice-sheet oscillating in extent and volume for much of the last 45 000 years. Periods of expansive ice-sheet glaciation dominated by ice-streaming were interspersed with periods of much more restricted ice-cap or tidewater/fjordic glaciation. Finally, this work indicates that the role of ice streams in ice-sheet evolution is complex but mechanistically important throughout the lifetime of an ice sheet – with ice streams contributing to the regulation of ice-sheet health but also to the acceleration of ice-sheet demise via marine ice-sheet instabilities.  相似文献   
6.
 Dioctahedral 2:1 phyllosilicates with different interlayer charge have been studied theoretically by using transferable empirical interatomic potentials. The crystal structures of pyrophyllite, muscovite, margarite, beidellite, montmorillonite, and different smectites and illites have been simulated. The interatomic potentials were able to reproduce the experimental structure of phyllosilicates with high, medium and low interlayer charge. The calculated structures are in agreement with experiment for the main structural features of the crystal lattice. The effect of the cation substitution in the octahedral and tetrahedral sheets on the structural features has been also studied. Good linear relationships have been found, and the calculated effects are consistent with experimental results. Some unknown structural features of the crystal structures of clays are predicted in this work. Received: 8 March 2000 / Accepted: 19 September 2000  相似文献   
7.
Infrared and Raman spectra of cristobalite are presented as a function of temperature through the phase transition. The modes are assigned and the assignments compared to those of earlier workers. The compatibility of modes at the G-point of the a-phase with the X and G-points of the ß-phase is given. In the transition region of ca. 500–550 K, smooth changes in intensity, frequency and linewidths are seen in many modes, indicative of coexistence of a- and ß-forms.  相似文献   
8.
9.
Mitigation of lunar dust adhesion by surface modification   总被引:2,自引:0,他引:2  
Dust has been recognized as one of the greatest hazards in continued lunar exploration due to its tenacious adhesion to everything with which it comes into contact. Unfortunately, there is little known about the mechanisms of adhesion on widely varying surface types: van der Waals and electrostatic forces are the dominant forces under consideration here. Surface energy, roughness, mechanical properties and electronic properties are all known to contribute to the adhesion characteristics. An optimal solution to mitigate dust adhesion would be to identify the dominant components of the adhesive force and to reduce that force by surface modification. In this study, an ion beam process was used to modify (treat) the surfaces of three dramatically different materials spanning the range of conductor (black Kapton), semiconductor (silicon), and insulator (quartz). Adhesive forces between less than JSC-1 lunar simulants and these virgin/treated surfaces were measured in vacuum using a centrifugal force detachment method. We found that JSC-1 particles adhered less to treated silicon and quartz surfaces, correlated with a reduction in van der Waals force due to a reduced surface energy. The large reduction in adhesion for treated black Kapton is mainly due to the large decrease in the electrostatic (image) force that results from reduced contact charging. Materials in space and on the lunar surface will be directly exposed to high-energy ultraviolet radiation prior to being covered by dust, so the UV irradiation effects on surface adhesion were also examined. Both virgin and treated quartz surfaces are most affected by the UV-irradiation, showing dramatically increased adhesion.  相似文献   
10.
 Calculations of the Rigid Unit Modes (RUMs) allowed in the nepheline structure are used to explain the diffuse scattering previously seen in electron diffraction experiments. The RUM calculations also show that the modulation wavelength for incommensurate nephelines is essentially determined by the framework topology. X-ray diffraction is used to measure the intensity of the diffuse scattering as a function of temperature. The diffuse intensity increases sharply at 308 K. This effect is interpreted as being due to the softening of a phonon mode, indicating a phase transition. Measurements of this phase transition below the transition temperature are made using hard mode infrared spectroscopy. Received: 17 February 1999 / Revised, accepted. 15 October 1999  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号