首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A loess sequence has been sampled continuously at high resolution in Nussloch (Rhine Valley, Germany) for malacological and grain-size analyses between ca. 34 and 20 ka. Molluscan abundance and richness, percentage in hygrophilous species and grain-size index show cyclical variations related to the lithological loess–gley alternation. Major molluscan abundance maxima were triggered by temperature increases through an enhancement of the reproduction cycle, whereas cyclical richness fluctuations and percentage in hygrophilous species reflect variations in local humidity and changes in the environmental mosaic. Malacological parameters allow the distinction of four environmental phases organised in cyclical successions correlated with most of the loess–gley doublets. The correlation of the grain-size index of the Nussloch loess sequence with the dust content of the GRIP ice core demonstrates the synchronicity of major molluscan abundance maxima and δ18O increases characterising temperature increases during Dansgaard–Oeschger interstades. A schematic model is proposed to link the North Atlantic Dansgaard–Oeschger climatic oscillations with local environmental changes indicated by both malacofauna and pedostratigraphy. This malacological study of the Nussloch loess sequence thus provides new information about the response of terrestrial loessic palaeoenvironments to millennial-timescale climatic fluctuations during the Upper Weichselian ( marine isotope stage 2 (MIS 2) and end of MIS 3).  相似文献   

2.
Two malacological sequences sampled in loess sections P1 and P3 of Nussloch (Rhine Valley, Germany) provide the most complete and precise molluscan record of western Europe for the Weichselian Lower and Middle Pleniglacial from about 70 to 34 cal. kyr BP. Qualitative and statistical analyses were performed on 134 mollusc samples. In the most complete Lower Pleniglacial record (P1), malacofauna changes reflect three short phases of vegetation development and climatic improvement related to soils and probably interstadials. A steppe to herb/shrub tundra shift characterizes the Lower-Middle Pleniglacial transition and is followed in both malacological records by the same general environmental trend (decline in vegetation and humidity increase) ending with a new increase in temperature and vegetation cover at the top of P3. In the Middle Pleniglacial, the impact of each shorter climatic change on the malacofauna is less recognizable due to a higher sediment compaction and also to being differently recorded in both sequences as the local topography affects soil water resources, soil and vegetation development and malacofauna adaptation. A comparison shows that the western European biostratigraphical framework can thus be improved by coupling molluscan records from loess sections to pollen sequences.  相似文献   

3.
4.
The Dry Creek archeologic site contains a stratified record of late Pleistocene human occupation in central Alaska. Four archeologic components occur within a sequence of multiple loess and sand layers which together form a 2-m cap above weathered glacial outwash. The two oldest components appear to be of late Pleistocene age and occur with the bones of extinct game animals. Geologic mapping, stratigraphic correlations, radiocarbon dating, and sediment analyses indicate that the basal loess units formed part of a widespread blanket that was associated with an arctic steppe environment and with stream aggradation during waning phases of the last major glaciation of the Alaska Range. These basal loess beds contain artifacts for which radiocarbon dates and typologic correlations suggest a time range of perhaps 12,000–9000 yr ago. A long subsequent episode of cultural sterility was associated with waning loess deposition and development of a cryoturbated tundra soil above shallow permafrost. Sand deposition from local source areas predominated during the middle and late Holocene, and buried Subarctic Brown Soils indicate that a forest fringe developed on bluff-edge sand sheets along Dry Creek. The youngest archeologic component, which is associated with the deepest forest soil, indicates intermittent human occupation of the site between about 4700 and 3400 14C yr BP.  相似文献   

5.
High concentrations of calcite fossil granules produced by earthworms (ECG) have been identified in most of the stratigraphical units along the loess‐palaeosol reference sequence of Nussloch (Germany). They are particularly abundant in interstadial brown soils and in tundra gley horizons, the latter reflecting short‐term phases of aggradation then degradation of permafrost. These granules are characterized by a radial crystalline structure produced in the earthworms by specific bio‐mineralization processes. In our study, we used this biological indicator combined with 14C and OSL dating, and sedimentological parameters to characterize millennial‐time scale climatic variations recorded in loess sequences. The approach is based on high‐resolution counts of ECG throughout a 17‐m‐thick loess sequence (332 samples). Strong increases in granule and mollusc concentrations suggest warmer climate conditions during palaeosol formation phases, associated with increasing biodiversity, biological activity and vegetation cover. Decreased granule concentrations occur within primary loess deposits, indicating a strong correlation with palaeoenvironmental conditions and demonstrating the reliability of ECG concentration variations as a new palaeoenvironmental proxy. Finally, this pattern is also recorded in loess sequences located about 600 km westward in northern France demonstrating the large‐scale validity of this new palaeoclimatic proxy.  相似文献   

6.
This paper reports the results of an investigation of the Weichselian Upper Pleniglacial loess sequences of Nussloch (Rhine Valley, Germany) based on stratigraphy, palaeopedology, sedimentology, palynology, malacology and geochemistry (δ13C), supported by radiocarbon, TL and OSL dating. Grain-size and magnetic susceptibility records are taken at 5 cm intervals from the Upper Pleniglacial (UPG) loess. The data indicate cyclic variations in loess deposition between ca 34 and 17 ka, when the sedimentation rate is especially high (1.0–1.2 m per ka for more than 10 m). The grain-size index (GSI: ratio of coarse silt versus fine silt and clay) shows variations, which are assumed to be an indirect measurement of wind intensity. The sedimentation rate, interpreted from the profiles, indicates high values in loess (Loess events LE-1 to LE-7) and low or negligible values in tundra gley horizons G1 to G8. OSL ages from the loess and 14C dates from organic matter in the loess show that loess deposition was rapid but was interrupted by shorter periods of reduced aeolian sedimentation. Comparison between the data from Nussloch and other European sequences demonstrates a progressive coarsening of the loess deposits between ca 30 and 22 ka. This coarsening trend ends with a short but major grain-size decrease and is followed by an increase to a new maximum at 20 ± 2 ka (“W” shape). Correlation between the loess GSI and the Greenland ice-core dust records, suggests a global connection between North Atlantic and Western European global atmospheric circulation and wind regimes. In addition, the typical Upper Pleniglacial loess deposition begins at ca 30–31 ka, close to Heinrich event (HE) 3, and the main period of loess sedimentation at about 25 ± 2 ka is coeval to HE 2. Correlation of magnetic susceptibility and grain-size records shows that the periods, characterised by high GSI, coincide with an increase in the amount of ferromagnetic minerals reworked from the Rhine alluvial plain. They suggest enhancement in the frequency of the storms from N–NW. These results are integrated within a palaeogeographical model of dust transport and deposition in Western Europe for the Weichselian Upper Pleniglacial (or Late Pleniglacial).  相似文献   

7.
Three clearly defined abrupt cooling events (ACEs) can be observed within Greenland Interstadial (GI)-1 in the Greenland ice-core records. However, the spatial variation in amplitude and timing of these ACEs is poorly understood due to the paucity of well-dated records with quantified temperature reconstructions. This study presents high-resolution chironomid-inferred July air temperature (TJul) and oxygen isotope (δ18O) records from Crudale Meadow (Orkney Isles, UK). Three centennial-scale ACEs punctuate the Windermere Interstadial at Crudale Meadow. The largest ACE shows an amplitude of 5.4 °C and a 1% isotopic decline and is centred on ~14.0 ka bp , consistent with the timing of the GI-1d event in the Greenland stratigraphy. The two other observed ACEs are of smaller magnitude and are centred on ~13.6 ka bp and ~13.2 ka bp , with these smaller magnitude events tentatively correlated with the GI-1cii and GI-1b events, respectively, but lack sufficient chronological constraint to fully assess their timing. When comparing the Crudale Meadow record with other locations in the British Isles a strong relationship can be observed between the magnitude of TJul cooling and latitude, with a reduced signal in more southerly locations, indicating that oceanic forcing may be a key driver of the ACEs.  相似文献   

8.
Gough's Cave is still Britain's most significant Later Upper Palaeolithic site. New ultrafiltered radiocarbon determinations on bone change our understanding of its occupation, by demonstrating that this lasted for only a very short span of time, at the beginning of the Lateglacial Interstadial (Greenland Interstadial 1 (GI-1: Bølling and Allerød)). The application of Bayesian modelling to the radiocarbon dates from this, and other sites from the period in southwest England, suggests that re-colonization after the Last Glacial Maximum took place only after 14,700 cal BP, and is, therefore, more recent than that of the Paris Basin and the Belgian Ardennes. On their own, the radiocarbon determinations cannot tell us whether re-colonization was synchronous with, just prior to, or after, Lateglacial warming. Isotopic studies of humanly-modified mammalian tooth enamel may be one way forward.  相似文献   

9.
It is suggested that the GRIP Greenland ice-core should constitute the stratotype for the Last Termination. Based on the oxygen isotope signal in that core, a new event stratigraphy spanning the time interval from ca. 22.0 to 11.5 k GRIP yr BP (ca. 19.0–10.0 k 14C yr BP) is proposed for the North Atlantic region. This covers the period from the Last Glacial Maximum, through Termination 1 of the deep-ocean record, to the Pleistocene–Holocene boundary, and encompasses the Last Glacial Late-glacial of the traditional northwest European stratigraphy. The isotopic record for this period is divided into two stadial episodes, Greenland Stadials 1 (GS-1) and 2 (GS-2), and two interstadial events, Greenland Interstadials 1 (GI-1) and2 (GI-2). In addition, GI-1 and GS-2 are further subdivided into shorter episodes. The event stratigraphy is equally applicable to ice-core, marine and terrestrial records and is considered to be a more appropriate classificatory scheme than the terrestrially based radiocarbon-dated chronostratigraphy that has been used hitherto. © 1998 John Wiley & Sons, Ltd.  相似文献   

10.
《Quaternary Science Reviews》2007,26(13-14):1871-1883
Multi-proxy palaeoenvironmental studies of nine sediment sequences from four areas in north-western Russia reveal significant changes in climate, lake productivity and vegetation during the Lateglacial and early Holocene that show some degree of correlation with changes reconstructed from sites throughout the North Atlantic region. At Lake Nero in the Rostov-Jaroslavl’ area, which is outside the maximum limit of the Scandinavian Ice Sheet, sedimentation recommenced shortly after 15 cal ka BP in response to increases in temperature and humidity during Greenland Interstadial 1 (GI-1; Bølling-Allerød). However, climatic amelioration during GI-1 was slow to increase lake organic productivity or trigger large-scale changes in much of northwestern Russia. In general, this region was characterised by long-lasting lake-ice cover, low lake productivity, soil erosion, and dwarf shrub and herb tundra until the end of Greenland Stadial 1 (GS-1; Younger Dryas). At some sites, distinct increases in lake organic productivity, mean summer temperatures and humidity and the expansion of forest trees coincide with rapid warming at the beginning of the Holocene and the increasing influence of warm air masses from the North Atlantic. At other sites, particularly on the Karelian Isthmus, but also in Russian Karelia, the delayed response of limnic and terrestrial environments to early Holocene warming is likely related to the cold surface waters of the Baltic Ice Lake, the proximity of the Scandinavian Ice Sheet and associated strengthened easterlies, and/or extensive permafrost and stagnant ice. These multi-proxy studies underscore the importance of local conditions in modifying the response of individual lakes and their catchments.While Lateglacial vegetation was dominated by Betula nana and Salix shrubs and various herbs, pollen and plant macrofossils suggest that Betula pubescens trees became established as early as 14–13 cal ka BP in the Rostov-Jaroslavl’ area. In general, our data sets suggest that trees migrated from the southeast to the west and then spread later to the northeast and northwest, paralleling the direction of ice retreat, with Betula pubescens immigrating first, followed by Pinus sylvestris and Picea abies. However, palaeoecological records from Lake Terebenskoye in the Valdai Highlands suggest that the arrival of Picea abies preceded other trees in that area and that it colonised tundra communities as early as 12 cal ka BP. Since Lateglacial vegetation change in north-western Russia was time-transgressive, independent measures of palaeoclimate (e.g., chironomid-based palaeotemperature estimates) are needed for this region.  相似文献   

11.
Previous research has shown that speleothems from the northern rim of the European Alps captured submillennial-scale climate change during the last glacial period with exceptional sensitivity and resolution, mimicking Greenland ice-core records. Here we extend this so-called NALPS19 record across the Late Glacial using two stalagmites which grew continuously into the Holocene. Both specimens show the same high-amplitude δ18O signal as Greenland ice cores down to decadal resolution. The start of the warming at the onset of the equivalent of Greenland Interstadial (GI) GI-1e at 14.66 ± 0.18 ka agrees with the North Greenland Ice Core Project (NGRIP) (14.64 ± 0.28 ka) and comprised a temperature rise of about 5–6 °C. The transition from the equivalent of GI-1a into the equivalent of Greenland Stadial (GS) GS-1 (broadly equivalent to the Younger Dryas) commenced at 13.02 ± 0.13 ka which is consistent with NGRIP (12.80 ± 0.26 ka) within errors. The onset of the Holocene started at 11.78 ± 0.14 ka (11.65 ± 0.10 ka at NGRIP) and involved a warming of about 4–5 °C. In contrast to δ18O, δ13C values show no response to (sub)millennial climate shifts due to strong rock-buffering and only record a long-term trend of soil development starting with the rapid warming at 14.7 ka.  相似文献   

12.
A number of correlated varve sequences from the local varve chronology in southeastern Sweden have been selected to make a 1040 varve years long mean varve thickness curve. Pollen analyses were carried out over an interval of 373 varve years in the northern part of the study area. The pollen stratigraphical data have been divided into local pollen assemblage zones which have been correlated with the radiocarbon-dated regional pollen assemblage zones. Based on variations in herb and tree pollen content of the analysed varve sequences, it has been possible to identify well-documented lateglacial pollen zones for southern Sweden, i.e. the Bölling interstadial (GI-1e), the Older Dryas cold event (GI-1d) and the early part of the Alleröd interstadial (GI-1c). The event stratigraphy in this study, based on varying varve thicknesses and the composition of the pollen flora in the varves, has been correlated with the oxygen isotope stratigraphy of the GRIP ice-core on Greenland between 13600 and 14400 GRIP ice-core years BP. It is concluded that five decadal warm events and one centennial warm event (15–60 and 100 varve years long, respectively) occur in the clay varve record along with one centennial cold event (150 varve years long), the Older Dryas (GI-1d).  相似文献   

13.
Chironomids and pollen were studied in a radiocarbon-dated sediment sequence obtained from a former lake near the Maloja Pass in the Central Swiss Alps (1865 m a.s.l.) to reconstruct the Lateglacial environment. Pollen assemblages imply a vegetation development around the Maloja Pass from shrub tundra at the beginning of the Allerød to coniferous forest during the early Holocene with a lowering of the timberline during the Younger Dryas. Chironomid assemblages are characterized by several abrupt shifts in dominant taxa through the Lateglacial. The occurrence of taxa able to survive hypoxia in the second part of the Allerød and during the Preboreal, and their disappearance at the onset of the Younger Dryas cold phase suggest summer thermal stratification and unfavourable hypolimnetic oxygen conditions in the palaeo-lake during the warmer periods of the Lateglacial interstadial and early Holocene. Mean July air temperatures were reconstructed using a chironomid-temperature transfer function from the Alpine region. The pattern of reconstructed temperature changes agrees well with the Greenland δ18O record and other Lateglacial temperature inferences from Central Europe. The inferred July temperatures of ca 10.0 °C during most of the Allerød were slightly lower than modern values (10.8 °C) and increased up to ca 11.7 °C (i.e., above present-day values) at the end of the Allerød. The first part of the Younger Dryas was colder (ca 8.8 °C) than the second part (ca 9.8 °C). During most of the Preboreal, the temperatures persisted within the limits of 13.5–14.5 °C (i.e., ca 3 °C above present-day values). The amplitudes of temperature changes at the Allerød–Younger Dryas–Preboreal transitions were ca 3.5–4.0 °C. The temperature reconstruction also shows three short-lived cooling events of ca 1.5–2.0 °C, which may be attributed to the centennial-scale Greenland Interstadial events GI-1d and GI-1b, and the Preboreal Oscillation.  相似文献   

14.
Recent stratigraphic studies in central Alaska have yielded the unexpected finding that there is little evidence for full-glacial (late Wisconsin) loess deposition. Because the loess record of western Alaska is poorly exposed and not well known, we analyzed a core from Zagoskin Lake, a maar lake on St. Michael Island, to determine if a full-glacial eolian record could be found in that region. Particle size and geochemical data indicate that the mineral fraction of the lake sediments is not derived from the local basalt and is probably eolian. Silt deposition took place from at least the latter part of the mid-Wisconsin interstadial period through the Holocene, based on radiocarbon dating. Based on the locations of likely loess sources, eolian silt in western Alaska was probably deflated by northeasterly winds from glaciofluvial sediments. If last-glacial winds that deposited loess were indeed from the northeast, this reconstruction is in conflict with a model-derived reconstruction of paleowinds in Alaska. Mass accumulation rates in Zagoskin Lake were higher during the Pleistocene than during the Holocene. In addition, more eolian sediment is recorded in the lake sediments than as loess on the adjacent landscape. The thinner loess record on land may be due to the sparse, herb tundra vegetation that dominated the landscape in full-glacial time. Herb tundra would have been an inefficient loess trap compared to forest or even shrub tundra due to its low roughness height. The lack of abundant, full-glacial, eolian silt deposition in the loess stratigraphic record of central Alaska may be due, therefore, to a mimimal ability of the landscape to trap loess, rather than a lack of available eolian sediment.  相似文献   

15.
Western European loess sequences of the last glaciation (100,000–15,000 years BP) exhibit strong, cyclic variations of the sedimentation rate, which are coeval to the Greenland stadial/interstadial cycles and the Heinrich events. These North-Atlantic rapid climate changes appear, thus, as a potential cause for the sedimentation variations, via changes in dust intensity cycle. Here we make a first step in testing this hypothesis, by modelling the impact of the North-Atlantic abrupt climate variations on dust emission. Our dust emission calculations use meteorological fields generated by the LMDZ atmospheric general circulation model at a resolution down to 60 km over Western Europe. Three numerical experiments are run, representing a Greenland stadial, an interstadial and a Heinrich event. Orbital parameters and ice-sheet configuration correspond to conditions from Marine Isotope Stage 3 (60,000–25,000 years BP), a period characterized by strong millennial-scale climate variability. The only differences we impose in the boundary conditions regard the North-Atlantic surface temperature and sea-ice cover in the latitudinal band 30°–63°N. The changes in wind, precipitation, soil moisture and snow cover from one simulated state to another result in small differences in dust emission intensity. In contrast, when the inhibition of the aeolian erosion by vegetation is taken into account, the dust fluxes for the cold climate states (Greenland stadial and Heinrich event) become generally more than twice higher than those for the relatively warmer Greenland interstadial, in agreement with the loess data. These results support the hypothesis that the North-Atlantic millennial-scale variability is imprinted in Western European loess profiles, and point to vegetation changes as the main factor responsible for millennial-scale sedimentation variations. An analysis for the English Channel and southern North Sea areas, major potential dust sources, shows that the seasonality of dust emission is not controlled by the wind speed, as in modern large deserts, but by the surface conditions. Consequently, the dusty season lasts from late winter to early summer, with maximum activity in April–May, and is shifted towards summer when the climate is colder.  相似文献   

16.
《Quaternary Science Reviews》2007,26(19-21):2420-2437
Lateglacial environments at Hijkermeer, northwest Netherlands, were reconstructed by means of chironomid, diatom and pollen analyses. Diatom assemblages indicate that Hijkermeer was a shallow, oligo- to mesotrophic lake during this period. Pollen assemblages reflect the typical northwest European Lateglacial vegetation development and provide an age assessment for the record from the beginning of the Older Dryas (ca 14 000 calibrated 14C yr BP) into the early Holocene (to ca 10 700 calibrated 14C yr BP). The chironomid record is characterized by several abrupt shifts between assemblages typically found in mid-latitude subalpine to alpine lakes and assemblages typical for lowland environments. Based on the chironomid record, July air temperatures were reconstructed using a chironomid-temperature transfer-function from central Europe. Mean July air temperatures of ca 14.0–16.0 °C are inferred before the Older Dryas, of ca 16.0–16.5 °C during most of the Allerød, of ca 13.5–14.0 °C during the Younger Dryas, and of ca 15.5–16.0 °C during the early Holocene. Two centennial-scale decreases in July air temperature were reconstructed during the Lateglacial interstadial which are correlated with Greenland Interstadial events (GI)-1d and -1b. The results suggest that vegetation changes in the Netherlands may have been promoted by the cooler climate during GI-1d, immediately preceding the Older Dryas biozone, and GI-1b. The Hijkermeer chironomid-inferred temperature record shows a similar temperature development as the Greenland ice core oxygen isotope records for most of the Lateglacial and a good agreement with other temperature reconstructions available from the Netherlands. This suggests that chironomid-based temperature reconstruction can be successfully implemented in the Northwest European lowlands and that chironomids may provide a useful alternative to oxygen isotopes for correlating European lake sediment records during the Lateglacial.  相似文献   

17.
《Quaternary Science Reviews》2003,22(18-19):1947-1986
Loess is one of the most widespread subaerial deposits in Alaska and adjacent Yukon Territory and may have a history that goes back 3 Ma. Based on mineralogy and major and trace element chemistry, central Alaskan loess has a composition that is distinctive from other loess bodies of the world, although it is quartz-dominated. Central Alaskan loess was probably derived from a variety of rock types, including granites, metabasalts and schists. Detailed stratigraphic data and pedologic criteria indicate that, contrary to early studies, many palaeosols are present in central Alaskan loess sections. The buried soils indicate that loess sedimentation was episodic, or at least rates of deposition decreased to the point where pedogenesis could keep ahead of aeolian input. As in China, loess deposition and pedogenesis are likely competing processes and neither stops completely during either phase of the loess/soil formation cycle. Loess deposition in central Alaska took place before, and probably during the last interglacial period, during stadials of the mid-Wisconsin period, during the last glacial period and during the Holocene. An unexpected result of our geochronological studies is that only moderate loess deposition took place during the last glacial period. Our studies lead us to conclude that vegetation plays a key role in loess accumulation in Alaska. Factors favouring loess production are enhanced during glacial periods but factors that favour loess accumulation are diminished during glacial periods. The most important of these is vegetation; boreal forest serves as an effective loess trap, but sparsely distributed herb tundra does not. Thus, thick accumulations of loess should not be expected where tundra vegetation was dominant and this is borne out by modern studies near the treeline in central Alaska. Much of the stratigraphic diversity of North American loess, including that found in the Central Lowlands, the Great Plains, and Alaska is explained by a new model that emphasizes the relative importance of loess production factors versus loess accumulation factors.  相似文献   

18.
近年来,在东秦岭南洛河流域发现了大批旧石器地点,该区域被认为是中国南北方旧石器工业的交汇和过渡地带。但是,早期人类在这一带的活动时间和环境背景尚不清楚。由于第四纪黄土的定年方法相对成熟,旧石器遗址的黄土堆积可为解决这些问题提供重要证据。对洛南盆地上白川和刘湾两个遗址的黄土剖面进行土壤地层和磁性地层研究以及光释光年龄和磁化率测定结果显示,该地区的黄土堆积可能从110万年前就已经开始,地层有明显的黄土-古土壤旋回,指示了气候和环境在冰期-间冰期时间尺度的变化。黄土地层下部出土的石制品表明,至少在约80万年前后人类就在这一带活动并制作工具。石制品两面加工技术被广泛采用,大量制作精美的手斧和薄刃斧等Acheulian工业类型工具的发现,显示洛南盆地的旧石器工业可能已经突破了"莫氏线(Movius Line)"的框架。  相似文献   

19.
Although much emphasis has been placed on the effects of Pleistocene ice sheet as the determinant of Pleistocene climate in Europe, only through the combined evaluation of all useful climatic indicators can Pleistocene climatic zones be differentiated. The relationships between a paleoclimatically determined snowline and polar treelines and extent of loess deposition, determined stratigraphically, botanically, and morphologically, also indicate climatic conditions of Pleistocene Europe. Five great climatic-morphologic and plant-geographic zones, namely, forest-rubble tundra, forest tundra, loess tundra, loess steppe, and loess-forest steppe, may be distinguished. Considering these factors and their characteristics and spatial and temporal extents, it is possible to chronologically present the differentiation of the Würm glacial period independent of the retardation effect of ice sheets. --G. E. Denegar.  相似文献   

20.
The regional climate correlation within the Northern Hemisphere in the cold/dry mid-Younger Dryas event (YD) remains elusive. A key to unraveling this issue is sufficient knowledge of the detailed climate variability at the low latitudes. Here we present a high-resolution (3-yr) δ18O record of an annually laminated stalagmite from central China that reveals a detailed Asian monsoon (AM) history from 13.36 to 10.99 ka. The YD in this record is expressed as three phases, characterized by gradual onsets but rapid ends. During the mid-YD, the AM variability exhibited an increasing trend superimposed by three centennial oscillations, well-correlated to changes in Greenland temperatures. These warming/wetting fluctuations show a periodicity of ~ 200 yr, generally in agreement with centennial changes in cosmogenic nuclides indicated by the 10Be flux from the Greenland ice. This relationship implies that centennial-scale climate changes during the mid-YD are probably caused by solar output and rapidly transported over broad regions through atmosphere reorganization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号