首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   2篇
测绘学   1篇
大气科学   1篇
综合类   1篇
自然地理   8篇
  2024年   1篇
  2013年   1篇
  2012年   1篇
  2011年   3篇
  2010年   3篇
  2009年   1篇
  2001年   1篇
排序方式: 共有11条查询结果,搜索用时 15 毫秒
1.
本文以济南市泉水补给区为研究对象,利用GIS空间分析方法,在其景观变化分析的基础上,参照中国陆地生态系统的生态服务价值系数,估算了泉水补给区生态服务功能价值变化,重点分析景观变化对研究区生态服务功能的影响,进而为区域可持续发展和城市建设提供理论支持。结果表明:(1)20世纪90年代以来,泉水补给区耕地和草地景观面积呈减少趋势,林地、园地和建设用地景观面积大幅增加,其中,以林地面积增加最大;从景观类型转化看,耕地与其他景观类型相互转化较为密切,特别是与建设用地和园地之间的转化;林地面积的增加主要来源于草地和耕地;(2)泉水补给区生态服务功能价值主要由林地和耕地景观生态服务价值构成,其变化对该研究区生态服务价值变化起决定作用;从生态服务价值构成类型来看,该地区土壤形成与保护服务功能单项价值所占比重最大,约占总服务功能价值的20%;(3)90年代以来,该地区总生态服务价值呈增加趋势;从单项服务价值变化来看,水源涵养、废物处理和食物生产服务功能价值则呈现出减小趋势,其中,以水源涵养减幅最大,为4.01%,主要是由该区建设用地增加,地面硬化面积增多而引起的。研究认为,济南市南部山区作为重要的泉水补给区,其生态服务功能尤为重要,特别是水源涵养功能,因此,研究区水源涵养服务功能价值的降低应在今后南部山区开发过程中得到足够的重视与保护,逐步增加泉水补给区的整体生态效益。  相似文献   
2.
拉萨河谷灌丛草原与农田水热平衡及植被水分利用特征   总被引:5,自引:0,他引:5  
以青藏高原的拉萨河谷下游的灌丛草原和农田为研究对象,在中国科学院拉萨高原生态试验站的农田与附近的灌丛草原开展实验.利用SHAW模型模拟了2004年10月-2005年9月灌丛草原与农田水热平衡以及根系吸水过程.模拟结果经分析得出,(1)农田所接收的净辐射比灌丛草原要多,农田接收的能量大部分以潜热形式支出,全年的波文比为0.29;而灌丛草原的波文比为0.89.灌丛草原全年的潜热通量是农田的53%,具有一定的抑制蒸散发的功能.(2)农田耗水量是灌丛草原的1.8倍.农田由于大量的灌溉造成较大的渗漏损失,同时也增加了土壤蒸发这一无益损耗.(3)深层土壤水向上的补给与根系吸水两方面的模拟都表明,灌丛草原的植被比农田能更大程度地利用深层土壤水.  相似文献   
3.
基于RFE2.0模型和Penman-Monteith模型,采用潜在蒸散降水比分析了2001—2010年青藏高原生长季(5—9月)干湿气候的时空变化格局,并对其影响因素进行了探讨。结果表明:(1)干旱和半干旱区占整个青藏高原区域的67%,主要集中在高原中部及中部以北;(2)2001—2010年有25%的区域在逐渐变干,北部干旱程度总体上在逐渐减轻,南部及东南部有变干倾向;(3)降水是导致高原区域干湿气候空间格局差异的主要因素,高原干湿气候对潜在蒸散变化的敏感性最强。  相似文献   
4.
近30 年来呼伦贝尔地区草地植被变化对气候变化的响应   总被引:50,自引:4,他引:46  
基于1981-2006 年的GIMMS NDVI数据和2000-2009 年的MODIS NDVI数据反演呼伦贝尔地区草地变化,结合1981-2009 年该地区7 个气象站点的气温和降水数据,分别从年际变化、季节变化和月变化角度分析该地区草地变化对气候变化的响应。结果表明,从年际变化来看,降水是驱动草地植被年际变化的主要因素;从季节变化来看,草地植被生长在不同季节对水热条件变化的敏感性不同,春季草地植被生长对气温变化的敏感性较降水变化高,夏季和秋季草地植被的生长对降水变化的敏感性则高于对气温变化的敏感性,其中以夏季最为显著;从月变化来看,4 月和5 月草地植被变化受气温变化影响较明显;5-8 月与前一月降水变化关系密切,说明植被生长对降水变化具有一定的滞后性;4 月正值草本植物萌芽期,而4 月份草地生长与年气温变化关系最为密切,一定程度上说明4 月份表征植被生长的NDVI值增加可能是由于气候变暖引起的草地植被生长季提前产生的。综上所述,通过植被与气候要素月变化的关系可以具体地揭示气温和降水对草地植被生长的季节韵律控制。  相似文献   
5.
Global warming has led to significant vegetation changes especially in the past 20 years. Hulun Buir Grassland in Inner Mongolia, one of the world’s three prairies, is undergoing a process of prominent warming and drying. It is essential to investigate the effects of climatic change (temperature and precipitation) on vegetation dynamics for a better understanding of climatic change. NDVI (Normalized Difference Vegetation Index), reflecting characteristics of plant growth, vegetation coverage and biomass, is...  相似文献   
6.
基于MODIS数据的2000-2005年东北亚草地NPP模拟(英文)   总被引:1,自引:0,他引:1  
The net primary production(NPP)of grasslands in northeastern Asia was estimated using improved CASA model with MODIS data distributed from 2000 and ground data as driving variables from 2000 to 2005.Average annual NPP was 146.05 g C m-2yr -1and average annual total NPP was 0.32 Pg C yr-1in all grasslands during the period.It was shown that average annual grassland NPP in the whole northeastern Asia changed dramatically from 2000 to 2005,with the highest value of 174.80 g C m-2yr-1in 2005 and the lowest valu...  相似文献   
7.
垫状植物是高寒生态系统中一类独特的物种,具有厚实的多年生垫状体,可以改善局部微环境,从而对生长于其内部的其他物种起到保育作用,被称为高寒生态系统的工程师,其中对土壤养分有效性的改变是其保育作用的重要途径,但关于这一过程的研究目前还很少。本研究选择青藏高原广泛分布的垫状点地梅(Androsace tapete),在西藏当雄念青唐古拉山脉南坡4500 m和4800 m两个海拔设置样地,通过动态测定垫状点地梅覆盖下土壤和无垫状点地梅生长的对照草地土壤在生长季中的无机氮含量、净氮矿化速率以及土壤酶活性,对比分析垫状点地梅对土壤氮素有效性的影响。结果表明:(1)土壤中硝态氮和铵态氮含量在4500 m样地无显著差异,但在4800 m样地,垫状点地梅覆盖下土壤的硝态氮与无机氮含量在生长季中期有显著增加,其中硝态氮比对照草地增加了56%,无机氮则增加了74.5%;(2)垫状点地梅还改变了土壤中氮的矿化趋势和速率。在4500 m样地,垫状点地梅覆盖下土壤净氮矿化在生长季中期为负值(氮固定),速率为-0.11μg g-1 d-1,而对照草地土壤则为正值(氮矿化)...  相似文献   
8.
近10 a青藏高原干湿状况及其与植被变化的关系研究   总被引:1,自引:0,他引:1       下载免费PDF全文
植被是陆地生态系统中最重要、同时也是气候变化最敏感的组分,而高原植被系统行为往往比其他地区能更早、更明显地预兆全球变化。探讨青藏高原区域干湿状况及其与植被变化的关系有助于更好地认识和理解陆地生态系统对气候变化的响应和适应机理,对高原生态安全屏障计划的实施以及全球生态建设有重要意义。基于地面气象台站观测数据和MODIS EVI数据集,2001-2010年生长季干湿状况和植被覆盖的时空变化格局,对青藏高原干湿状况与植被覆盖变化的关系进行了分析与探讨。结果表明:(1)高原整体上呈现由东南向西北渐干的趋势,干旱及半干旱区占高原总面积的67%。10 a间高原有25%的区域在逐渐变干,且南北差异明显;(2)高原生长季EVI的空间格局与干湿格局相近,且东西部界线分明。10 a间高原植被活动由东南向西北整体上呈现“退化-增强-变化不大”的规律;(3)区域干湿程度对EVI空间格局差异有显著影响,特别是在占高原面积44%的半干旱区,两者相关性最大。人为干扰对高原EVI变化的作用不明显,但EVI与干湿程度相关性相对偏小的区域人为干扰程度往往较大;(4)从高原96个气象站点生长季[EVI]对干燥度指数变化的敏感性来看,敏感程度较大的气象站点主要集中在高原东北部、高原中部及雅鲁藏布江中上游区域,60%以上的气象站点随着干旱程度的加深植被呈退化趋势。  相似文献   
9.
基于1982~2006年GIMMS NDVI数据集和地面气象台站观测数据,分析了青藏高原整个区域及各生态地理分区年均NDVI的变化趋势,并通过偏相关分析研究不同生态地理分区植被覆被变化对气温和降水响应的空间分异特征。研究表明:(1)近25年来,高原植被覆盖变化整体上趋于改善;高原东北部、东中部以及西南部湿润半湿润及部分半干旱地区植被趋于改善,植被覆盖较差的北部、西部半干旱和干旱地区呈现退化趋势;(2)高原植被变化与气温变化的相关性明显高于与降水变化的相关性,说明高原植被年际变化对温度变化更为敏感;(3)高原植被年际变化与气温和降水的相关性具有明显的区域差异,植被覆盖中等区域全年月NDVI与气温和降水的相关性最强,相关性由草甸向草原、针叶林逐步减弱,荒漠区相关性最弱。生长季植被覆盖变化与气温的相关性和全年相关性较一致,降水则不同,生长季期间高原大部分地区植被变化与降水相关性不显著。  相似文献   
10.
30年来呼伦贝尔地区草地植被对气候变化的响应(英文)   总被引:8,自引:3,他引:5  
Global warming has led to significant vegetation changes especially in the past 20 years. Hulun Buir Grassland in Inner Mongolia, one of the world’s three prairies, is undergoing a process of prominent warming and drying. It is essential to investigate the effects of climatic change (temperature and precipitation) on vegetation dynamics for a better understanding of climatic change. NDVI (Normalized Difference Vegetation Index), reflecting characteristics of plant growth, vegetation coverage and biomass, is used as an indicator to monitor vegetation changes. GIMMS NDVI from 1981 to 2006 and MODIS NDVI from 2000 to 2009 were adopted and integrated in this study to extract the time series characteristics of vegetation changes in Hulun Buir Grassland. The responses of vegetation coverage to climatic change on the yearly, seasonal and monthly scales were analyzed combined with temperature and precipitation data of seven meteorological sites. In the past 30 years, vegetation coverage was more correlated with climatic factors, and the correlations were dependent on the time scales. On an inter-annual scale, vegetation change was better correlated with precipitation, suggesting that rainfall was the main factor for driving vegetation changes. On a seasonal-interannual scale, correlations between vegetation coverage change and climatic factors showed that the sensitivity of vegetation growth to the aqueous and thermal condition changes was different in different seasons. The sensitivity of vegetation growth to temperature in summers was higher than in the other seasons, while its sensitivity to rainfall in both summers and autumns was higher, especially in summers. On a monthly-interannual scale, correlations between vegetation coverage change and climatic factors during growth seasons showed that the response of vegetation changes to temperature in both April and May was stronger. This indicates that the temperature effect occurs in the early stage of vegetation growth. Correlations between vegetation growth and precipitation of the month before the current month, were better from May to August, showing a hysteresis response of vegetation growth to rainfall. Grasses get green and begin to grow in April, and the impacts of temperature on grass growth are obvious. The increase of NDVI in April may be due to climatic warming that leads to an advanced growth season. In summary, relationships between monthly-interannual variations of vegetation coverage and climatic factors represent the temporal rhythm controls of temperature and precipitation on grass growth largely.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号