首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   54篇
  免费   8篇
  国内免费   16篇
测绘学   2篇
大气科学   21篇
地球物理   2篇
地质学   14篇
海洋学   29篇
综合类   4篇
自然地理   6篇
  2023年   4篇
  2022年   5篇
  2021年   3篇
  2020年   5篇
  2019年   8篇
  2018年   5篇
  2017年   3篇
  2016年   4篇
  2015年   4篇
  2014年   7篇
  2013年   6篇
  2012年   2篇
  2011年   6篇
  2010年   3篇
  2009年   3篇
  2008年   3篇
  2007年   1篇
  2006年   3篇
  2005年   2篇
  2003年   1篇
排序方式: 共有78条查询结果,搜索用时 15 毫秒
1.
2.
利用CMA-SH9模式逐小时降水预报数据和地面自动站-CMORPH卫星融合降水数据,开展该模式对2020年暖季(5~9月)川渝地区降水日变化的预报效果评估。结果表明:CMA-SH9模式可以再现小时平均降水量在四川盆地偏小、盆地周边陡峭地形处偏大的空间分布特征;显著的预报正偏差分布于青藏高原东坡至四川盆地西南部一带和四川盆地以东地区,偏差来自降水频率和降水强度的共同贡献;预报负偏差分布于四川盆地,主要来自模式对降水强度的低估;降水日变化峰值时间自西向东呈午夜到上午的滞后,模式预报的降水日变化峰值时间超前于观测;模式能够较好地把握青藏高原东坡至四川盆地西南部一带和四川盆地的单峰型日变化位相,以及盆地以东地区的双峰型日变化位相,但预报的降水量值和观测存在一定偏差。   相似文献   
3.
史猛  康凤新  张杰  高松  于晓静 《地质学报》2021,95(5):1594-1605
中生代、新生代时期地壳剧烈运动将胶东半岛划分为胶北隆起、胶莱凹陷、胶南-威海隆起三大构造单元,其中隆起山地区广泛分布花岗岩、变质岩,凹陷盆地区主要分布砂岩沉积地层,胶北隆起区与威海隆起区相对于胶莱凹陷盆地区具有更高的大地热流值.为系统分析胶东半岛大地热流值分布特征及其形成机理,本文在分析胶东半岛构造-热发展史、地热地质背景、地温场分布、岩石热导率、钻孔岩性与测温数据、地热流体化学成分等基础上,发现胶东半岛地热资源均为断裂构造控制类型的中低温对流型,其热源主要为三元聚热:导热断裂带水热对流、大地热流传导、地下水运移传导-对流;构造分布、岩石热物性、地热热储分布、地下水活动等是影响地温场分布的主要因素.针对胶东半岛地温场特征及其控制因素,提出了适合该地区的隆起-凹陷分流聚热模式与概念模型,即隆起山地区岩性以导热率、渗透率相对较高的侵入岩、变质岩为主,凹陷盆地区岩性以导热率、渗透率相对较低的砂岩为主,低导热率、低渗透率的凹陷区底部更像是一个相对隔热、隔水的顶板,使得来自地壳深部的大地热流及携带热量的流体、气体等在上涌的过程中在凹陷区的底部发生折射与再分配,从而导致热流在隆起山地区的底部形成一个温度相对更高的聚热区,反映在地表即是隆起山地区相对凹陷盆地区具有更高的大地热流值,特别隆起山地区轴部位置为热流值最高的区域,高热流值区域分布形态呈NE、NNE向分布,基本与胶东半岛NE、NNE向的深大断裂走向一致,该模式的提出可以更好地为胶东地区的地热资源勘探提供指导方向.  相似文献   
4.
利用常规观测资料、NCEP再分析资料、卫星以及雷达资料对2015年8月16—18日影响川渝地区的一次持续性大暴雨过程进行了分析。结果表明:在亚洲中高纬和低纬相对稳定的环流背景下,两次高原涡东移、两次冷空气南下侵入四川盆地共同促进了西南低涡生成发展,造成此次大暴雨过程。西南低涡"初生形成"阶段,地面热低压东北侧有冷锋侵入,中心偏北形成暖锋,低涡近于正压;"稳定持续发展"阶段,冷锋南段移至地面热低压南侧,北段与暖锋结合形成准静止锋,低涡斜压性明显且呈近圆形,持续性暴雨主要出现在西南低涡的暖切变线附近和冷槽东侧;"东移变形减弱"阶段,冷空气第二次侵入,冷锋持续增强,西南低涡东移变形减弱。低层辐合、高层辐散、充沛的水汽输送以及不稳定能量的累积为西南低涡的加深、发展和强降水的维持提供了重要条件。西南低涡暖切变线和南侧冷槽附近发展起来的对流云团是暴雨产生的直接原因,强降水主要发生在云团上风方TBB梯度相对较大的区域。此次强降水过程的局地环流有低空急流和低空辐合线或切变线配合,雷达体积速度处理(velocity volume processing,VVP)法反演的风矢图可更直观地判断风向风速、天气系统所处的发展阶段以及判识辐合线或切变线,低空辐合线或切变线的演变以及低空急流的强度和移向对强降水天气产生的动力条件、维持时间和回波外推预报具有重要的指导意义。  相似文献   
5.
青岛近海大型水母漂移集合预测方法研究   总被引:1,自引:0,他引:1  
考虑水母垂直运动等自主运动,基于集合预报和拉格朗日粒子追踪方法,建立青岛近海大型水母的集合漂移预测模型。并利用2012—2013年青岛近海水母实时监测数据和集合漂移预测模型,快速预测水母集合漂移轨迹、速度、趋势和可能影响范围等要素。通过分析水母监测数据和数值模拟结果,在水母如何自主运动及其机理尚不十分清楚的情况下,多轨迹漂移预测结果比单轨迹的更合理、科学、可信,能够传达更多的信息量,对水母灾害的应急处置更具有指导意义。  相似文献   
6.
黄海绿潮应急溯源数值模拟初步研究   总被引:2,自引:0,他引:2  
基于三维全动力POM 海洋模式, 根据2008 年6 月1 日海监飞机监测绿潮所在位置, 采用拉格朗日粒子追踪法反向积分, 追溯绿潮来源。数值模拟结果显示, 回溯至5 月中旬, 绿潮主要来源于黄海南部江苏连云港和盐城近海海域。黄海绿潮溯源数值模拟, 为政府相关部门了解绿潮的源头, 并采取相应的措施提供依据, 进而为保护生态环境、防灾减灾做贡献。  相似文献   
7.
干旱程度对C3植物红砂和C4植物珍珠光合生理参数的影响   总被引:2,自引:1,他引:1  
严巧娣  苏培玺  高松 《中国沙漠》2012,32(2):364-371
 C3和C4植物混生在草地生态系统中较多,而在荒漠生态系统少见。在中国荒漠地区,C3小灌木红砂和C4半灌木珍珠在特定生境下混生在一起,以独特方式适应高温强光和干旱的极端环境。通过在不同干旱程度下测定它们生长期叶片的光合气体交换参数,探讨它们在混生条件下对极端环境的生理响应特征。结果表明,红砂的净光合速率(Pn)、蒸腾速率(E)、气孔导度(Gs)均要高于珍珠;而珍珠的水分利用效率(WUE)则要高于红砂。这表明珍珠和红砂在水分匮乏的荒漠生境下采取了不同的生存策略。红砂通过维持较高净光合速率和较高蒸腾速率来生存;而珍珠则通过高水分利用效率生存。  相似文献   
8.
MCC转为带状MCSs过程中水平涡度的变化与暴雨的关系   总被引:4,自引:0,他引:4  
利用实况资料和WRF中尺度数值模式对2010年6月18—19日的一次MCC转带状MCSs的暴雨过程进行数值模拟与诊断分析。结果表明:850 hPa西南涡和切变线的形成与维持是影响此次暴雨产生的中尺度系统,前期MCC的形成到成熟以低涡降水为主,后期的圆形MCC转为带状MCSs主要为切变线降水。在雨区附近,u、v的垂直切变所形成的强水平涡度造成的旋转,对应垂直环流的上升支可触发暴雨产生,垂直方向上u、v不同的分布可形成不同的垂直环流。低涡与切变线附近的水平涡度有明显差异,这种差异导致暴雨形成的原因不同,低涡暴雨主要由v的垂直切变造成,切变线暴雨主要由u、v的垂直切变共同作用,本次过程中v的垂直切变构成了沿切变线的东西向雨带,u的垂直切变沿纬向的不均匀性引起的垂直运动与切变线上MCSs的生成、发展和多雨团的形成关系密切。低涡、切变线降水中心附近的正倾侧项(水平涡度向垂直正涡度转换)也有类似的差异,低涡的转换主要由?v/?p<0决定,切变线的转换主要由-?u/?p>0决定。水平涡度向垂直涡度的转换尺度较小,易在平均状态下被忽略。倾侧项主要有利于暴雨的加强,但对西南涡、切变线的发展贡献较小。   相似文献   
9.
快速城市化进程中的太湖水环境保护:困境与出路   总被引:23,自引:7,他引:16  
太湖流域经济发达、城市化水平高,伴随着城市化过程的各种环境问题十分突出。城市化过程对太湖水环境质量的负面影响主要表现在生活污水排放量增加、人畜粪便对水污染的程度加剧、化学肥料施用量增加、非点源污染负荷增加以及自然景观对污染物的去除能力降低等方面,由此导致的营养盐入湖量增加将严重制约太湖水质的改善。充分认识并努力减轻这些负面影响是改善太湖水环境质量的前提,在分析问题的基础上提出了一些针对性的应对策略。  相似文献   
10.
基于弧段标记的交通网络时间最短路径算法   总被引:2,自引:0,他引:2  
标号算法是经典的最短路径算法之一,在交通领域中具有广泛的应用。在交通领域中,时间最短路径比距离最短路径更有意义,而时间最短路径不仅与道路的时间权值有关,还与道路之间的转弯阻抗有关。在传统的交通路网抽象方式下,道路抽象为平面图中的弧段,道路间的交叉口抽象为节点。本文介绍了一种适用于传统交通路网模型的弧段标记时间最短路径算法,详细阐述了该算法的原理、数据基础与运行结构。通过分析和实例测试表明,该算法可以顾及城市路网在路口的交通限行与转弯延迟的影响,并且时间复杂度低,具有一定的实际应用价值。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号