首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
伽马暴偏振探测仪(POLAR)是天宫2号实验室上搭载的一个γ射线偏振仪,于2016年9月15日搭载在天宫2号进入低轨运行,主要用于探测在50-500 keV能区的硬X射线辐射的线偏振.POLAR由25个模块组成,每个模块有64个塑料闪烁体棒,总计有1600个塑料闪烁体棒,具有较大的有效探测面积和视场.在轨运行期间探测到多个小耀斑,它们的硬X射线光子能量通常小于50 keV,无法直接使用在轨和地面的高能定标结果来进行能谱分析.结合拉马第太阳高能光谱成像探测器(RHESSI)对耀斑SOL2016112907能谱的观测和蒙特卡洛模拟,对耀斑期间被激活的闪烁体棒进行能量低于50 keV的低能相对定标.虽然定标得到的能量阈值(~10 keV)和转换因子相对稳定,但是和高能定标给出的结果相比有显著差异,并且不同闪烁体棒显示出的差异没有明显的规律性.  相似文献   

2.
捕获在天体磁场中的高能电子激发的回旋脉泽辐射是天体射电辐射的一个重要机制,被广泛应用于解释各种非热射电辐射现象,特别是时标的相干射电爆发现象。以往的研究中,激发脉泽辐射的源就是高能电子具有各向异性的速度分布。然而,观测显示太阳和其他天体的高能电子常常呈现具有低能截止行为的幂律谱分布。计算了温度各向异性分布和具有低能截止行为的温度各向异性分布驱动的回旋脉泽不稳定性的生长率,结果显示,幂律谱电子的低能截止行为对回旋脉泽辐射具有重要的影响。  相似文献   

3.
在解释天体爆发过程中的短时标相干射电辐射现象方面,非热电子驱动的回旋脉泽辐射得到了广泛应用.在以往的研究中,一个关键条件是非热电子具有各向异性速度分布,从而有效激发回旋脉泽不稳定性.然而,观测显示太阳和其他天体的非热电子经常呈现负幂律谱形式的能量分布.非热电子的这种负幂律能谱特征会严重抑制回旋脉泽不稳定性放大率,因此,进一步研究非热电子的负幂律能谱分布行为,能拓宽电子回旋脉泽辐射机制的适用性,很好地发展天体射电辐射机制理论.最近研究结果显示,负幂律谱电子的低能截止行为可以有效地激发电子回旋脉泽辐射,从而拓宽了其在天体物理研究中的应用范围.  相似文献   

4.
从RXTE(Rossi X-ray timing explorer)观测原始数据出发,分析了耀变体3C 273在X射线波段2~10 keV从1996年2月2日(MJD 50115)到2007年8月27日(MJD 54339)的数据.一共得到了1 010次观测数据的光子谱指数和相应的流量,平均每次观测时间为1 666.76 s.通过分析3C 273在观测期间2~10 keV硬X射线的能谱变化及光变行为,发现在2000年2月,2003年3、4月,2004年2、3、7月,2006年及2007年,其光子谱指数Γ与流量lgF_(2~10 keV)存在显著反相关.在1999年和2000~2007年观测期间,Γ与lgF_(2~10 keV)月平均行为也同样存在显著反相关.对整个观测期间的光变行为作定量的分析,发现几次较大的光变,并在部分光谱拟合中发现Fe发射线存在的证据,其平均宽度为93.85±21.49 eV.通过分析光变强度与Fe发射线特性,发现3C 273同时具有耀变体与Seyfert星系的一些性质.  相似文献   

5.
在双星系统X射线源HerX-1的硬X射线波段测量到强的X射线谱线.第一条谱线在58keV,第二条谱线在110keV附近,并给出了谱线宽度,强度比和流量.对这种现象可以有几种解释,其中之一是认为这些谱线是由强磁场中量子化的电子同步加速辐射产生,从而可以推导出发射区的磁场强度.这几乎可以认为是宇宙中存在强磁场的  相似文献   

6.
黑洞X射线暂现源的迷你爆发是一类峰值光度较低、持续时间较短的爆发.由于观测数据较少,其物理机制仍不清楚.利用RXTE (Rossi X-ray Timing Explorer)卫星从2001年1月28日到3月14日的数据,研究了黑洞X射线暂现源XTE J1550–564 2001年迷你爆发的X射线能谱特性.发现在本次迷你爆发中, XTE J1550–564的X射线能谱可以用幂律谱很好地拟合.整个爆发的硬度强度图不是标准的q型,而是一直保持在最右侧.此外,还分析了此次爆发谱指数Γ与未吸收的2–10 keV能段的X射线流量F_(2–10 keV)的相关性,发现Γ-F_(2–10 keV)呈反相关关系,且谱指数Γ∈[1.35, 1.72].上述结果表明2001年这次爆发一直处于低/硬态,它的X射线辐射主要来自于辐射低效的吸积模式,如ADAF(Advection-Dominated Accretion Flow).  相似文献   

7.
SSW(Solar SoftWare)的能量电子产生X光子的轫致辐射积分计算发展到版本2时,其性能相比初始的版本1提高很多.在版本2的基础上,对这个积分进一步改进.通过对比几种轫致辐射积分方案,结果显示,最终的方案性能上比版本2可以快约2~5倍.在积分的精确性上比版本1及版本2均改进了很多,在缺省的积分控制精度下也不再产生光子谱的尖刺现象.而且,积分耗时不再敏感于积分上限取值.由于积分性能的提高,使得利用精确的轫致辐射截面计算轫致积分成为可能.结果显示,用精确轫致辐射截面比先前的近似截面积分的结果光子流量略小(≤4%),积分时间大约比先前使用近似截面多30%.  相似文献   

8.
正负电子湮灭形成的511keV线谱是高能天体物理学光子能谱中的重要成分.本文通过Monte Carlo计算,研究了吸积双星系统(典型的如 CygX-3)中的正负电子湮灭过程.结果表明,一定物理环境下吸积双星系统可以发射较窄的正负电子湮灭线,它的流强和宽度依赖于双星系统发射的高能γ光子的强度大小,X射线晕的状态、尺度和温度分布以及吸积盘中电子的密度大小和分布.本文也讨论了现代的实验(如GRO卫星上的OSSE探测器)观测它的可能性.  相似文献   

9.
用同步-自康普顿机制(SSC)来解释1994年5月在BLlac天体Mrk421中观测到的TeV-X射线爆发,认为此Tex-X射线爆发是由一个高能成分产生的,它具有平坦的电子能量分布,其低能段上能谱指数αe≈0.25,这个爆发成分独立另一个低能成分(或宁静成分)此宁静成分具有较陡的电子能量分布,它产生宁静态的辐射能谱。大多数射电爆发表明电子能量分布有坦谱,能谱指数αe≈0.2-0.4,与这个事实一起  相似文献   

10.
太阳耀斑伽玛射线能谱是加速粒子与太阳大气介质原子碰撞的结果,它是研究太阳耀斑中加速粒子和高能电子最为直接的手段.通过分析伽玛射线能谱,可以获得耀斑过程中加速粒子的成分、能谱、角分布及太阳大气元素丰度等重要信息.TALYS程序是一套模拟核反应的软件,对核反应过程中的所有信息均能完整地描述.利用TALYS计算得到了完整的太阳耀斑伽玛射线的核反应截面数据,开发了一套新的耀斑伽玛射线谱计算程序.详细介绍了耀斑伽玛射线计算的理论模型,并简单探讨了耀斑伽玛射线的特性,为未来的耀斑伽玛射线能谱分析奠定了理论基础.  相似文献   

11.
The flattening at the low energy end of the hard X-ray (HXR) photon spectrum of solar flares was generally thought to be due to a cutoff of nonthermal electrons in flares. However, some authors have suggested that inverse Compton scattering (i.e., the albedo effect) or certain other reaction of flare photons with the lower atmosphere can also lead to the flattening. This paper adopts the method of deriving the cutoff proposed by Gan et al. [12–14], and makes a statistical analysis on 100 flares observed by the satellite Ramaty High Energy Solar Spectroscopy Imager (RHESSI) in 2002–2005. We found that after the albedo correction, the HXR photon spectra of 18 flares can be fitted with single powerlaw spectra, and those of 80 flares, with double power-law spectra. Besides, 21 flares can be directly interpreted with a single power-law electron spectrum plus a low energy cutoff. The range of the low energy cutoff is 20–50 keV and the mean value is approximately 30 keV. Some other possible interpretations are also investigated.  相似文献   

12.
Langmuir waves (LWs), which are believed to play a crucial role in the plasma emission of solar radio bursts, can be excited by streaming instability of energetic electron beams. However, solar hard X-ray observations imply that the energetic flare electrons usually have a power-law energy distribution with a lower energy cutoff. In this paper, we investigate LWs driven by the power-law electrons. The results show that power-law electrons with the steepness cutoff behavior can excite LWs effectively because of the population inversion distribution below the cutoff energy (E c ). The growth rate of LWs increases with the steepness index (δ) and decreases with the power-law index (α). The wave number of the fastest growing LWs ( D ), decreases with the characteristic velocity of the power-law electrons ( \(v_{c}=\sqrt{2E_{c}/m_{e}}\) ) and increases with the thermal velocity of ambient electrons (v T ). This can be helpful for us to understand better the physics of LWs and the dynamics of energetic electron beams in space and astrophysical plasmas.  相似文献   

13.
The power-law energy spectra of non-thermal electrons for each 1.024 second have been drawn together during the flare. For some flares, it is discovered that the energy spectra taken at different times present a roughly fixed crossing point, at which point the flux of non-thermal electrons keeps the same during the flare. The possible significance of this phenomenon is discussed. We conjecture that there may be a flux saturation at the low-energy cutoff in the process of electron acceleration.  相似文献   

14.
Gan  W.Q.  Li  Y.P.  Chang  J.  Tiernan  James M. 《Solar physics》2002,207(1):137-147
By changing a dimensionless calculation to a dimensional one, introducing a more accurate bremsstrahlung cross section, and using a more reasonable fitting energy range, we have recalculated the hard X-ray bremsstrahlung produced by a beam of power-law electrons with a lower energy cutoff (E c). The method to deduce E c from the hard X-ray spectral observations has therefore been refined in comparison with our previous one. The universality of this method has been clarified and discussed. We have applied this improved method to the 54 BATSE/Compton Gamma Ray Observatory (CGRO) hard X-ray events. It was found that about 44% of sample hard X-ray spectra can be directly explained by a beam of power-law electrons with a lower energy cutoff. The value of E c, varying from 45 keV to 97 keV, is on average 60 keV. Another 44% of sample hard X-ray spectra might be explained by a beam of power-law electrons with the energy cutoff lower than 45 keV, which is however beyond the availability of BATSE/CGRO. Still another 11% sample hard X-ray spectra cannot be explained by a beam of power-law electrons with a lower energy cutoff. These results, based on the lower energy resolution data, however, should be compared in the future with that based on a higher energy resolution data, like the data from HESSI.  相似文献   

15.
Based on the frequency dependence of the power-law distribution of the peak fluxes in 486 radio bursts in 1–35 GHz observed by Nobeyama Radio Polarimeters (see Song et al. in Astrophys. J. 750:160, 2012), we have first suggested in this paper that the events with power-law behaviors may be emitted from the optically-thin regions, which can be considered as a good measure for the flare energy release. This result is supported by that both the power-law and optical-thin events gradually increase with radio frequencies, which are well fitted by a power-law function with similar indices of 0.48 and 0.80, respectively. Moreover, a flare occurrence rate is newly defined by the power-law event number in per unit frequency. Its values in lower frequencies are evidently larger than those in higher frequencies, which just imply that most flares are trigged in higher corona. Hence, the frequency variation of power-law event number may indicate different energy dissipation rates on different coronal heights.  相似文献   

16.
Zhang  J.  Huang  G.L. 《Solar physics》2004,219(1):135-148
Theoretical calculation has shown that the spectrum of the Compton backscattering component in solar hard X-ray flares has a peak around 30 keV for a primary power-law source. Thus the superposition of the Compton backscattering component could cause a photon spectrum received at the Earth to be flattened below the peak energy and steeper above the peak energy. On the other hand, because a thick-target bremsstrahlung photon with a given energy E only could be produced by a nonthermal electron with an energy larger than E, thus if a power-law electron spectrum is cutoff below an energy E c, then the produced photon spectrum will become flattened below E c. In this work we present a calculation of the joint effects of the Compton backscattering and the low-energy cutoff on the spectral characteristics of the received solar hard X-ray in the energy range 10–100 keV. The results show that the flattening caused purely by the Compton backscattering could be comparable with that by the low-energy cutoff for hard spectra. So, it is obvious that the joint effects of the low-energy cutoff and the Compton backscattering could result in the received photon spectra to be much more flattened at lower energies. On the other hand, compared to the primary photon spectrum, the received photon spectral index will increase about 0.15 due to the Compton backscattering at higher energy, which seems independent of the primary spectral index.  相似文献   

17.
The power-law frequency distributions of the peak flux of solar flare X-ray emission have been studied extensively and attributed to a system having self-organized criticality(SOC).In this paper,we first show that,so long as the shape of the normalized light curve is not correlated with the peak flux,the flux histogram of solar flares also follows a power-law distribution with the same spectral index as the powerlaw frequency distribution of the peak flux,which may partially explain why power-law distributions are ubiquitous in the Universe.We then show that the spectral indexes of the histograms of soft X-ray fluxes observed by GOES satellites in two different energy channels are different:the higher energy channel has a harder distribution than the lower energy channel,which challenges the universal power-law distribution predicted by SOC models and implies a very soft distribution of thermal energy content of plasmas probed by the GOES satellites.The temperature(T) distribution,on the other hand,approaches a power-law distribution with an index of 2 for high values of T.Hence the application of SOC models to the statistical properties of solar flares needs to be revisited.  相似文献   

18.
A statistical study of 228 flares on the three UV Ceti-type stars, i.e., YZ CMi, AD Leo, and EV Lac, is presented. Observations were gathered by Ichimura and Shimizu over a total monitoring time of 907 hours distributed over 18 years (1971 to 1988). Period analysis of flare activity was performed, and no periodicity was detected on the three stars for either the flare number rate or the energy rate in time-scales ranging from a year up to 14 years. Average colour of flares at peak was (U-B)=–0.98±0.17 and (B-V)=0.05±0.13. Cumulative number distributions of flare event time-integrated energies were solved by a least-squares method on a log-log plot for a power-law function to get both the constant of and the gradient , which were found to be similar among the three stars. The gradient showed that rare large flare events radiate most of the energy released by all the flare events in the monitoring time. The flare number rate and energy rate are similar if the power-law distributions are extended up to a specific maximum energy. In reality, the Kolmogorov-Smirnov test showed that the observed cumulative number distributions of flare event energy were not necessarily a power-law function. The monte-Carlo simulation, however, indicates that the monitoring time and/or the patrol observation time interval may not be long enough to get the average flare number rate and energy rate, especially at the upper energy limits which are statistically unreliable.  相似文献   

19.
1 INTRODUCTIONThe lower energy cutoff of nonthermal electron beams is an important quantity. Not only isit related to the acceleration mechanism, but it also determines the total number of acceleratedelectrons and the energy they carry. The power-law of electron beams cannot extend to lowerenergies indefinitely for if it did, it would imply an indeflnite1y large nuInber of electrons.A lower energy cutoff (E.), therefore, must exist, to keep the number of electrons within areasonable rang…  相似文献   

20.
The reconnecting current sheet model for energy accumulation and release during solar flares results in the flare frequency distribution that is a power-law function of total flare energy, with the index 7/4 for sufficiently large energies. The distribution is predicted to be much steeper in the low-energy region, implying the significance of microand nanoflares for coronal heating.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号