首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Based on a 0.5°×0.5° daily gridded precipitation dataset and observations in meteorological stations released by the National Meteorological Information Center,the interannual variation of areal precipitation in the Qilian Mountains during 1961–2012 is investigated using principal component analysis(PCA) and regression analysis,and the relationship between areal precipitation and drought accumulation intensity is also analyzed.The results indicate that the spatial distribution of precipitation in the Qilian Mountains can be well reflected by the gridded dataset.The gridded data-based precipitation in mountainous region is generally larger than that in plain region,and the eastern section of the mountain range usually has more precipitation than the western section.The annual mean areal precipitation in the Qilian Mountains is 724.9×108 m3,and the seasonal means in spring,summer,autumn and winter are 118.9×108 m3,469.4×108 m3,122.5×108 m3 and 14.1×108 m3,respectively.Summer is a season with the largest areal precipitation among the four seasons,and the proportion in summer is approximately 64.76%.The areal precipitation in summer,autumn and winter shows increasing trends,but a decreasing trend is seen in spring.Among the four seasons,summer have the largest trend magnitude of 1.7×108 m3?a–1.The correlation between areal precipitation in the mountainous region and dry-wet conditions in the mountains and the surroundings can be well exhibited.There is a negative correlation between drought accumulation intensity and the larger areal precipitation is consistent with the weaker drought intensity for this region.  相似文献   

2.
Global climate change has been evident in many places worldwide. This study provides a better understanding of the variability and changes in frequency, intensity, and duration of temperature, precipitation, and climate extremes in the Extensive Hexi Region, based on meteorological data from 26 stations. The analysis of average, maximum, and minimum temperatures revealed that statistically significant warming occurred from 1960 to 2011. All temperature extremes displayed trends consistent with warming, with the exception of coldest-night temperature(TNn) and coldest-day temperature(TXn), which were particularly evident in high-altitude areas and at night. Amount of precipitation and number of rainy days slowly increased with no significant regional trends, mainly occurring in the Qilian Mountains and Hexi Corridor. The significance of changes in precipitation extremes during 1960–2011 was high, but the regional trends of maximum 5-day precipitation(RX5day), the average precipitation on wet days(SDII), and consecutive wet days(CWD) were not significant. The variations in the studied parameters indicate an increase in both the extremity and strength of precipitation events, particularly in higher-altitude regions. Furthermore, the contribution from very wet precipitation(R95) and extremely wet precipitation(R99) to total precipitation also increased between 1960 and 2011. The assessment of these changes in temperature and precipitation may help in developing better management practices for water resources. Future studies in the region should focus on the impact of these changes on runoffs and glaciers.  相似文献   

3.
On the basis of two gridded datasets of daily precipitation and temperature with a spatial resolution of 0.5°×0.5°, and meteorological station data released by the National Meteorological Information Center(NMIC) during 1961–2013, the spatial and temporal variations of total amount of precipitation, amount of rainfall, amount of snowfall and snowfall/rainfall ratio(S/R) in the Tibetan Plateau(TP) are analyzed using Sen's slope, the Mann–Kendall mutation test, Inverse Distance Weighting(IDW) and the Morlet wavelet. Total amount of precipitation and amount of rainfall generally show statistically significant increasing trends of 0.6 mm·a~(–1) and 1.3 mm·a~(–1), respectively, while amount of snowfall and S/R have significant decreasing trends of –0.6 mm·a~(–1) and –0.5% a~(–1), respectively. In most regions, due to significant increasing trends in total amount of precipitation and amount of rainfall, and significant decreasing trends in amount of snowfall, S/R shows a decreasing trend in the TP. Abrupt changes in total amount of precipitation, amount of rainfall, amount of snowfall and S/R are detected for 2005, 2004, 1996 and 1998, respectively. Total amount of precipitation, amount of rainfall, amount of snowfall and S/R are concentrated in cycles of approximately 5 years, 10 years, 16 years and 20 years, respectively. The trend magnitudes for total amount of precipitation and amount of rainfall all show decreasing-to-increasing trends with elevation, while amount of snowfall and S/R show decreasing trends.  相似文献   

4.
WenWen Wang 《寒旱区科学》2013,5(2):0240-0250
Based on daily maximum and minimum surface air temperature and precipitation records at 48 meteorological stations in Xinjiang, the spatial and temporal distributions of climate extreme indices have been analyzed during 1961-2008. Twelve temperature extreme indices and six precipitation extreme indices are studied. Temperature extremes are highly correlated to annual mean temperature, which appears to be significantly increasing by 0.08 °C per year, indicating that changes in temperature extremes reflect consistent warming. The warming tendency is clearer at stations in northern Xinjiang as reflected by mean temperature. The frequencies of cold days and nights have both decreased, respectively by 0.86 and 2.45 d/decade, but the frequencies of warm days and nights have both increased, respectively by +1.62 and +4.85 d/decade. Over the same period, the number of frost days shows a statistically significant decreasing trend of 2.54 d/decade. The growing season length and the number of summer days exhibit significant increasing trends at rates of +2.62 and +2.86 d/decade, respectively. The diurnal temperature range has decreased by 0.28 °C/decade. Both annual extreme low and high temperatures exhibit significant increasing trend, with the former clearly larger than the latter. For precipitation indices, regional annual total precipitation shows an increasing trend and most other precipitation indices are strongly correlated with annual total precipitation. Average wet day precipitation, maximum 1-day and 5-day precipitation, and heavy precipitation days show increasing trends, but only the last is statistically significant. A decreasing trend is found for consecutive dry days. For all precipitation indices, stations in northwestern Xinjiang have the largest positive trend magnitudes, while stations in northern Xinjiang have the largest negative magnitudes.  相似文献   

5.
Based on daily maximum and minimum temperature observed by the China Meteorological Administration at 115 meteorological stations in the Yangtze River Basin from 1962 to 2011,the methods of linear regression,principal component analysis and correlation analysis are employed to investigate the temporal variability and spatial distribution of temperature extremes.Sixteen indices of extreme temperature are selected.The results are as follows:(1) The occurrence of cold days,cold nights,ice days,frost days and cold spell duration indicator has significantly decreased by –0.84,–2.78,–0.48,–3.29 and –0.67 days per decade,respectively.While the occurrence of warm days,warm nights,summer days,tropical nights,warm spell duration indicator and growing season length shows statistically significant increasing trends at rates of 2.24,2.86,2.93,1.80,0.83 and 2.30 days per decade,respectively.The tendency rate of the coldest day,coldest night,warmest day,warmest night and diurnal temperature range is 0.33,0.47,0.16,0.19 and –0.07℃ per decade,respectively.(2) The magnitudes of changes in cold indices(cold nights,coldest day and coldest night) are obviously greater than those of warm indices(warm nights,warmest day and warmest night).The change ranges of night indices(warm nights and cold nights) are larger than those of day indices(warm days and cold days),which indicates that the change of day and night temperature is asymmetrical.(3) Spatially,the regionally averaged values of cold indices in the upper reaches of the Yangtze River Basin are larger than those in the middle and lower reaches.However,the regionally averaged values of most warm indices(except warm spell duration indicator) and growing season length in the middle and lower reaches are larger than those in the upper reaches.(4) The extreme temperature indices are well correlated with each other except diurnal temperature range.  相似文献   

6.
Zhao  Guining  Zhang  Zhengyong  Liu  Lin  Li  Zhongqin  Wang  Puyu  Xu  Liping 《地理学报(英文版)》2020,30(6):988-1004
The glacier mass balance(GMB) is an important link between climate and water resources and has remarkable regulatory functions in river runoff. To simulate changes of the GMB and to analyze the recharge rates of glacier meltwater to runoff in the Manas River Basin(MRB) during 2000–2016, MOD11 C3, TRMM 3 B43 and other multi-source remote sensing data were used to drive the degree-day model. The results showed that:(1) the accuracy of the remote sensing meteorological data can be corrected effectively by constructing the temperature and precipitation inversion models, and the characteristics of glacial climate can be finely described through downscaling. The average annual temperature was –7.57 °C and the annual precipitation was 410.71 mm in the glacier area of the MRB. The zone at an altitude of about 4200 m was a severe climate change zone, and above and below that zone, the temperature drop rates were –0.03°C/100 m and –0.57°C/100 m, respectively, while precipitation gradients were –2.66 mm/100 m and 4.89 mm/100 m, respectively.(2) The overall GMB was negative with a cumulative GMB of up to –9811.19 mm w.e. and the average annual GMB fluctuated between –464.85 and –632.19 mm w.e. Besides, the glacier melted slowly during 2000–2002 and 2008–2010, but rapidly for 2002–2008 and 2010–2016, while the most serious loss of the glacier occurred in 2005–2009. Moreover, the vertical changes of the GMB increased at 244.83 mm w.e./100 m in the ablation zone but only at 18.77 mm w.e./100 m in the accumulation zone.(3) The intraannual runoff strongly responded to the change of the GMB especially in July and August when the loss of the GMB accounted for 75.4% of the annual loss, and when runoff accounted for 55.1% of the annual total. Due to differences in the annual precipitation and snow meltwater outside the glacier, the interannual glacier meltwater recharge rates fluctuated between 19% and 31%. The recharge rate of glacier meltwater to runoff in the MRB was close to that for other basins in the Tianshan Mountains, which may be used as a basis to confirm the reliability of the estimated GMB results. Furthermore, based on the present findings, it is recommended that the research community pursue studies on the GMB in other alpine river basins.  相似文献   

7.
On the basis of the summer daily-precipitation meteorological data collected from weather stations across Northwest China from 1957 to 2016, this study evaluated the trends in 12-daily precipitation indices in the summer season and their relations with air temperature. Precipitation-event intensity, which was averaged over the total study area, increased in recent decades although the total precipitation continuously decreased. In particular, intensity generally decreased in the northern and eastern parts and increased in the southern and western parts of the study area. None of the 12 precipitation indices was significantly correlated with temperature in Xinjiang; R95 N(number of events with precipitation greater than the long-term95 th percentile), RX1 day(greatest 1-day total precipitation), PI(simple daily intensity), and R10(number of heavy-precipitation days) were significantly and positively correlated with temperature in Qinghai–Gansu. However, low correlation coefficients were observed. In the Loess Plateau, P(total precipitation), WS(maximum number of consecutive wet days),R95 N, and WD(number of wet days) were significantly and negatively correlated with temperature, whereas Gini(gini concentration index) and DS(maximum number of consecutive dry days) were significantly and positively correlated with temperature. Results of the study suggested that climate shift was evident in terms of daily precipitation, and the study area faced new challenges involving precipitation-event intensity increasing in the southwestern part and unevenly dispersing in the northwest.  相似文献   

8.
A total of 12 indices of temperature extremes and 11 indices of precipitation ex-tremes at 111 stations in southwestern China at altitudes of 285-4700 m were examined for the period 1961-2008. Significant correlations of temperature extremes and elevation in-cluded the trends of diurnal temperature range, frost days, ice days, cold night frequency and cold day frequency. Regional trends of growing season length, warm night frequency, coldest night and warmest night displayed a statistically significant positive correlation with altitude. These characteristics indicated the obvious warming with altitude. For precipitation extreme indices, only the trends of consecutive dry days, consecutive wet days, wet day precipitation and the number of heavy precipitation days had significant correlations with increasing alti-tude owing to the complex influence of atmospheric circulation. It also indicated the increased precipitation mainly at higher altitude areas, whereas the increase of extreme precipitation events mainly at lowers altitude. In addition, the clearly local influences are also crucial on climate extremes. The analysis revealed an enhanced sensitivity of climate extremes to ele-vation in southwestern China in the context of recent warming.  相似文献   

9.
Accurate rainfall distribution is difficult to acquire based on limited meteorological stations, especially in remote areas like high mountains and deserts. The Hexi Corridor and its adjacent regions (including the Qilian Mountains and the Alxa Plateau) are typical districts where there are only 30 available rain gauges. Tropical Rainfall Measuring Mission (TRMM) data provide a possible solution. After precision analysis of monthly 0.25 degree resolution TRMM 3B43 data from 1998 to 2012, we find that the correlations between TRMM 3B43 estimates and rain gauge precipitation are significant overall and in each station around the Hexi Corridor; however, the biases of annual precipitation differ in different stations and are seriously overestimated in most of the sites. Thus, Inverse Distance Weighting (IDW) interpolation method was used to rectify TRMM data based on the difference between TRMM 3B43 estimates and rain gauge observations. The results show that rectified TRMM data present more details than rain gauges in remote areas where there are few stations, alt- hough they show high coherence of distribution. Precipitation decreases from southeast to northwest on an annual and seasonal scale. There are three rainfall centers (〉500 mm) including Menyuan, Qilian and Toson Lake, and two low rain- fall centers (〈50 mm) including Dunhuang and Ejin Banner. Meanwhile, precipitation in most of the study area presents an increasing trend; especially in northern Qilian Mountains (〉5 mm/a), Badain Jaran Desert (〉2 mm/a), Toson Lake (〉20 mm/a) and Qingtu Lake (〉20 ram/a) which shows a significant increasing trend, while precipitation in Hala Lake (〈-2 mm/a) and Tengger Desert (〈-3 mm/a) demonstrates a decreasing trend.  相似文献   

10.
Following climate change, changes in precipitation patterns and food security are major challenges faced by humans. However, research on how these changes in precipitation pattern impacts food supply is limited. This study aims to elucidate this impact and response mechanisms using precipitation data of a climate change-sensitive confluence zone of the southwest and southeast monsoons in Yunnan Province from 1988 to 2018. The results revealed that the precipitation pattern could be divided into three periods: abundant precipitation(Stage I, from 1988 to 2004), decreased precipitation(Stage II, from 2005 to 2015), and drought recovery(Stage III, from 2016 to 2018). Following the transition from Stage I to Stage II and from Stage II to Stage III, the area of precipitation changed significantly, accounting for 15.07%, 13.87%, and 16.53% of Yunnan's total area, for Stages I, II, and III, respectively. At the provincial level, a significant positive correlation was observed between precipitation and food production(r = 0.535, P 0.01), and the correlation coefficient between precipitation and grain yield was higher than that between precipitation and meat and milk production. Based on a precipitation–grain yield transect and breakpoint detection method, key precipitation thresholds affecting grain yield were estimated as 700 and 1500 mm, respectively; when precipitation was 700, 700–1500, and ≥1500 mm, the correlation coefficients between precipitation and grain yield were 0.448(P 0.01), 0.370(P 0.01), and –0.229(P 0.05), respectively. Based on the precipitation thresholds, Yunnan Province can be divided into precipitation surplus, precipitation equilibrium, and precipitation deficit regions, corresponding countermeasures to stabilize grain yield were proposed for each of these regions. The threshold effect of precipitation on grain yield is controlled by molecular-level water–crop mechanisms, in which reactive oxygen species, a by-product of plant aerobic metabolism, plays a key regulatory role.  相似文献   

11.
Under the impacts of climate change and human activities, great uncertainties still exist in the response of climate extremes, especially in Central Asia(CA). In this study, we investigated spatial-temporal variation trends and abrupt changes in 17 indices of climate extremes, based on daily climate observations from 55 meteorological stations in CA during 1957–2005. We also speculated as to which atmospheric circulation factors had the greatest impacts on climate extremes. Our results indicated that the annual mean temperature(Tav), mean maximum and minimum temperature significantly increased at a rate of 0.32℃/10 a, 0.24℃/10 a and 0.41℃/10 a, respectively, which was far higher than the increasing rates either globally or across the Northern Hemisphere. Other temperature extremes showed widespread significant warming trends, especially for those indices derived from daily minimum temperature. All temperature extremes exhibited spatially widespread rising trends. Compared to temperature changes, precipitation extremes showed higher spatial and temporal variabilities. The annual total precipitation significantly increased at a rate of 4.76 mm/10 a, and all precipitation extremes showed rising trends except for annual maximum consecutive dry days(CDD), which significantly decreased at a rate of –3.17 days/10 a. On the whole, precipitation extremes experienced slight wetter trends in the Tianshan Mountains, Kazakhskiy Melkosopochnik(Hill), the Kyzylkum Desert and most of Xinjiang. The results of Cumulative Deviation showed that Tav and Txav had a significant abrupt change around 1987, and all precipitation indices experienced abrupt changes in 1986. Spearman's correlation analysis pointed to Siberian High and Tibetan Plateau Index_B as possibly being the most important atmospheric circulation factors affecting climate extremes in CA. A full quantitative understanding of these changes is crucial for the management and mitigation of natural hazards in this region.  相似文献   

12.
Chen  Shaodan  Zhang  Liping  Zhang  Yanjun  Guo  Mengyao  Liu  Xin 《地理学报(英文版)》2020,30(1):53-67
Drought is one of the most frequent and widespread natural disasters and has tremendous agricultural, ecological, societal, and economic impacts. Among the many drought indices, the standardized precipitation index(SPI) based on monthly precipitation data is simple to calculate and has multiscale characteristics. To evaluate the applicability of high spatiotemporal resolution satellite precipitation products for drought monitoring, based on the Tropical Rainfall Measuring Mission(TRMM) products and station-based meteorological data, the SPI values at different time scales(1, 3, 6, and 12 months) were calculated for the period of 1998–2016 in the middle and lower reaches of the Yangtze River Basin(MLRYRB). The temporal correlations show that there is a high degree of consistency between calculations at the different time scales(1, 3, 6 and 12 months) based on the two data sources and that the amplitude of fluctuations decreases with increasing time scale. In addition, the Mann-Kendall(MK) test method was applied to analyze the trends from 1998 to 2016, and the results suggest that wetting trends clearly prevailed over drying trends. Moreover, a correlation analysis of the two data sources based on 60 meteorological stations was performed with the SPI values at different time scales. The correlation coefficients at the short time scales(1, 3, and 6 months) are all greater than 0.7, and the correlation coefficient at the long time scale(12 months) is greater than 0.5. In summary, the results demonstrate that the TRMM 3 B43 precipitation product provides a new data source that can be used for reliable drought monitoring in the MLRYRB.  相似文献   

13.
The Yangtze River Watershed in China is a climate change hotspot featuring strong spatial and temporal variability;hence, it poses a certain threat to social development. Identifying the characteristics of and regions vulnerable to climate change is significantly important for formulating adaptive countermeasures. However, with regard to the Yangtze River Watershed, there is currently a lack of research on these aspects from the perspective of natural and anthropogenic factors. To address this issue, in this study, based on the temperature and precipitation records from 717 meteorological stations, the RClim Dex and random forest models were used to assess the spatiotemporal characteristics of climate change and identify mainly the natural and anthropogenic factors influencing climate change hotspots in the Yangtze River Watershed for the period 1958-2017. The results indicated a significant increasing trend in temperature, a trend of wet and dry polarization in the annual precipitation, and that the number of temperature indices with significant variations was 2.8 times greater than that of precipitation indices. Significant differences were also noted in the responses of the climate change characteristics of the sub-basins to anthropogenic and natural factors;the delta plain of the Yangtze River estuary exhibited the most significant climate changes, where 88.89% of the extreme climate indices varied considerably. Furthermore, the characteristics that were similar among the identified hotpots, including human activities(higher Gross Domestic Product and construction land proportions) and natural factors(high altitudes and large proportions of grassland and water bodies), were positively correlated with the rapid climate warming.  相似文献   

14.
The Yarlung Zangbo River (YR) is the highest great river in the world, and its basin is one of the centers of human economic activity in Tibet. Using 10 meteorological stations over the YR basin in 1961–2005, the spatial and temporal characteristics of temperature and precipitation as well as potential evapotranspiration are analyzed. The results are as follows. (1) The annual and four seasonal mean air temperature shows statistically significant increasing trend, the tendency is more significant in winter and fall. The warming in Lhasa river basin is most significant. (2) The precipitation is decreasing from the 1960s to the 1980s and increasing since the 1980s. From 1961 to 2005, the annual and four seasonal mean precipitation is increasing but not statistically significant, especially in fall and spring. The increasing precipitation rates are more pronounced in Niyangqu and Palong Zangbo river basins, the closer to the upper YR is, the less precipitation increasing rate would be. (3) The annual and four seasonal mean potential evapotranspiration has decreased, especially after the 1980s, and most of it happens in winter and spring. The decreasing trend is most significant in the middle YR and Nianchu river basin. (4) Compared with the Mt. Qomolangma region, Tibetan Plateau, China and global average, the magnitudes of warming trend over the YR basin since the 1970s exceed those areas in the same period, and compared with the Tibetan Plateau, the magnitudes of precipitation increasing and potential evapotranspiration decreasing are larger, suggesting that the YR basin is one of the most sensitive areas to global warming.  相似文献   

15.
中国天气发生器的降水模拟   总被引:1,自引:0,他引:1  
A stochastic model for daily precipitation simulation in China was developed based on the framework of a ‘Richardson-type‘ weather generator that is an important tool in studying impacts of weather/climate on a variety of systems including ecosystem and risk assessment. The purpose of this work is to develop a weather generator for applications in China. The focus is on precipitation simulation since determination of other weather variables such as temperature is dependent on precipitation simulation. A framework of first order Markov Chain with Gamma Distribution for daily precipitation is adopted in this work. Based on this framework, four parameters of precipitation simulation for each month at 672 stations all over China were determined using daily precipitation data from 1961 to 2000. Compared with previous works, our estimation for the parameters was made for more stations and longer observations, which makes the weather generator more applicable and reliable. Spatial distributions of the four parameters are analyzed in a regional climate context. The seasonal variations of these parameters at five stations representing regional differences are discussed.Based on the estimated monthly parameters at 672 stations, daily precipitations for any period can be simulated. A 30-year simulation was made and compared with observations during 1971-2000 in terms of annual and monthly statistics. The results are satisfactory, which demonstrates the usefulness of the weather generator.  相似文献   

16.
中国东部植被NDVI对气温和降水的时空响应(英文)   总被引:8,自引:4,他引:4  
Temporal and spatial response characteristics of vegetation NDVI to the variation of temperature and precipitation in the whole year,spring,summer and autumn was analyzed from April 1998 to March 2008 based on the SPOT VGT-NDVI data and daily temperature and precipitation data from 205 meteorological stations in eastern China.The results indicate that as a whole,the response of vegetation NDVI to the variation of temperature is more pronounced than that of precipitation in eastern China.Vegetation NDVI maxi...  相似文献   

17.
The precipitation regime of the low latitude highlands of Yunnan in Southwest China is subject to the interactions between the East Asian Summer Monsoon and the Indian Summer Monsoon, and the influence of surface orography. An understanding of changes in its spatial and temporal patterns is urgently needed for climate change projection, hydrologi- cal impact modelling, and regional and downstream water resources management. Using daily precipitation records of the low latitude highlands over the last several decades (1950s-2007), a time series of precipitation indices, including annual precipitation, number of rainy days, mean annual precipitation intensity, the dates of the onset of the rainy season, degree and period of precipitation seasonal concentration, the highest 1-day, 3-day and 7-day precipitation, and precipitation amount and number of rainy days for precipitation above dif- ferent intensities (such as 〉~10 mm, 〉~25 mm and 〉~50 mm of daily precipitation), was con- structed. The Trend-Free Pre-Whitening Mann-Kendall trend test was then used to detect trends of the time series data. The results show that there is no significant trend in annual precipitation and strong seasonal differentiation of precipitation trends across the low latitude highlands. Springs and winters are getting wetter and summers are getting drier. Autumns are getting drier in the east and wetter in the west. As a consequence, the seasonality of pre- cipitation is weakening slightly. The beginning of the rainy season and the period of the highest precipitation tend to be earlier. In the meantime, the low latitude highlands has also witnessed less rainy days, more intense precipitation, slightly longer moderate and heavy precipitation events, and more frequent extreme precipitation events. Additionally, regional differentiation of precipitation trends is remarkable. These variations may be associated with weakening of the East Asian summer monsoon and strengthening of the South Asian summer monsoon, as well as the "corridor-barrier" effects of special mountainous terrain. However, the physical mechanisms involved still need to be uncovered in the future.  相似文献   

18.
三江源地区气候变化及其对径流的驱动分析(英文)   总被引:6,自引:3,他引:3  
Based on the precipitation and temperature data of the 12 meteorological stations in the "Three-River Headwaters" region and the observed runoff data of Zhimenda in the headwater sub-region of the Yangtze River, Tangnaihai in the headwater sub-region of the Yellow River and Changdu in the headwater sub-region of the Lancang River during the period 1965-2004, this paper analyses the trends of precipitation, temperature, runoff depth and carries out significance tests by means of Mann-Kendall-Sneyers sequential trend test. Makkink model is applied to calculate the potential evaporation. The runoff model driven by precipitation and potential evaporation is developed and the influence on runoff by climate change is simulated under different scenarios. Results show that during the period 1965-2004 the temperature of the "Three-River Headwaters" region is increasing, the runoff of the three hydrological stations is decreasing and both of them had abrupt changes in 1994, while no significant trend changes happen to the precipitation. The runoff model suggests that the precipitation has a positive effect on the runoff depth, while the potential evaporation plays a negative role. The influence of the potential evaporation on the runoff depth of the Lancang River is found to be the significant in the three rivers; and that of the Yellow River is the least. The result of the scenarios analysis indicates that although the precipitation and the potential evaporation have positive and negative effects on runoff relatively, fluctuated characteristics of individual effect on the runoff depth in specific situations are represented.  相似文献   

19.
中国城市扩展对气温观测的影响及其高估程度(英文)   总被引:3,自引:1,他引:2  
Since the implementation of the reform and opening up policy in China in the late 1970s, some meteorological stations ’entered’ cities passively due to urban expansion. Changes in the surface and built environment around the stations have influenced observations of air temperature. When the observational data from urban stations are applied in the interpolation of national or regional scale air temperature dataset, they could lead to overestimation of regional air temperature and inaccurate assessment of warming. In this study, the underlying surface surrounding 756 meteorological stations across China was identified based on remote sensing images over a number of time intervals to distinguish the rural stations that ’entered’ into cities. Then, after removing the observational data from these stations which have been influenced by urban expansion, a dataset of background air temperatures was generated by interpolating the observational data from the remaining rural stations. The mean urban heat island effect intensity since 1970 was estimated by comparing the original observational records from urban stations with the background air temperature interpolated. The result shows that urban heat island effect does occur due to urban expansion, with a higher intensity in winter than in other seasons. Then the overestimation of regional air temperature is evaluated by comparing the two kinds of grid datasets of air temperature which are respectively interpolated by all stations’ and rural stations’ observational data. Spatially, the overestimation is relatively higher in eastern China than in the central part of China; however, both areas exhibit a much higher effect than is observed in western China. We concluded that in the last 40 years the mean temperature in China increased by about 1.58℃, of which about 0.01℃ was attributed to urban expansion, with a contribution of up to 0.09℃ in the core areas from the overestimation of air temperature.  相似文献   

20.
1951-2002年长江流域降水特征   总被引:2,自引:0,他引:2  
The monthly, seasonal, and annual precipitation trends in the Yangtze river catchment have been detected through analysis of 51 meteorological stations‘ data between 1950-2002 provided by National Meteorological Administration. Results reveal that: 1) Summer precipitation in the Yangtze river catchment shows significant increasing tendency. The Poyanghu lake basin, Dongtinghu lake basin and Taihu lake basin in the middle and lower reaches are the places showing significant positive trends. Summer precipitation in the middle and lower reaches experienced an abrupt change in the year 1992; 2) The monthly precipitation in months just adjoining to summer shows decreasing tendency in the Yangtze river catchment. The upper and middle reaches in Jialingjiang river basin and Hanshui river basin are the places showing significant negative trends; 3) Extreme precipitation events show an increasing tendency in most places, especially in the middle and lower reaches of the Yangtze river catchment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号