首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
The starting dates of the pre-summer rainy season during historical times(1736– 1911) in Fuzhou and Guangzhou of South China, were determined and reconstructed on the basis of historical documents in the Yu-Xue-Fen-Cun archive, together with observed features of precipitation during the pre-summer rainy season. In addition, starting dates of the pre-summer rainy season from 1953 in Fuzhou and from 1952 in Guangzhou were reconstructed for the instrumental period. These data allowed for analyses of inter-annual and inter-decadal changes in the starting dates of the pre-summer rainy season in South China over the past 300 years. Results show that the mean starting date of the pre-summer rainy season in South China was the first pentad of May; in addition, periodicities in the starting dates of 2–3 years, 10 years, and 40 years were detected during the period 1736–1911, and of 2–3 years, 10 years, and 22 years during the instrumental period. From 1736 to 1911, the earliest starting dates at Fuzhou and Guangzhou both occurred at the fourth pentad of April, while the latest starting dates were at the sixth pentad of May in Fuzhou and the first pentad of June in Guangzhou. During the instrumental period, the earliest and latest starting dates were at the fourth pentad of April and the first pentad of June, respectively, in both Fuzhou during 1953–2010 and Guangzhou during 1952–2010. The maximum difference between neighboring decades during 1736–1911 was 2.2 and 1.6 pentads in Fuzhou and Guangzhou, respectively, and during the instrumental period it was 2.5 and 2.4 pentads in Fuzhou and Guangzhou, respectively.  相似文献   

2.
The starting dates of the pre-summer rainy season during historical times (1736- 1911) in Fuzhou and Guangzhou of South China, were determined and reconstructed on the basis of historical documents in the Yu-Xue-Fen-Cun archive, together with observed features of precipitation during the pre-summer rainy season. In addition, starting dates of the pre-summer rainy season from 1953 in Fuzhou and from 1952 in Guangzhou were reconstructed for the instrumental period. These data allowed for analyses of inter-annual and inter-decadal changes in the starting dates of the pre-summer rainy season in South China over the past 300 years. Results show that the mean starting date of the pre-summer rainy season in South China was the first pentad of May; in addition, periodicities in the starting dates of 2-3 years, 10 years, and 40 years were detected during the period 1736-1911, and of 2-3 years, 10 years, and 22 years during the instrumental period. From 1736 to 1911, the earliest starting dates at Fuzhou and Guangzhou both occurred at the fourth pentad of April, while the latest starting dates were at the sixth pentad of May in Fuzhou and the first pentad of June in Guangzhou. During the instrumental period, the earliest and latest starting dates were at the fourth pentad of April and the first pentad of June, respectively, in both Fuzhou during 1953-2010 and Guangzhou during 1952-2010. The maximum difference between neighboring decades during 1736-1911 was 2.2 and 1.6 pentads in Fuzhou and Guangzhou, respectively, and during the instrumental period it was 2.5 and 2.4 pentads in Fuzhou and Guangzhou, respectively.  相似文献   

3.
The quantity and spatial pattern of farmland has changed in China, which has led to a major change in the production potential under the influence of the national project of ecological environmental protection and rapid economic growth during 1990–2010. In this study, the production potential in China was calculated based on meteorological, terrain elevation, soil and land-use data from 1990, 2000 and 2010 using the Global Agro-ecological Zones model. Then, changes in the production potential in response to farmland changes from 1990 to 2010 were subsequently analyzed. The main conclusions were the following. First, the total production potential was 1.055 billion tons in China in 2010. Moreover, the average production potential was 7614 kg/ha and showed tremendous heterogeneity in spatial pattern. Total production in eastern China was high, whereas that in northwestern China was low. The regions with high per unit production potential were mainly distributed over southern China and the middle and lower reaches of the Yangtze River. Second, the obvious spatiotemporal heterogeneity in farmland changes from 1990 to 2010 had a significant influence on the production potential in China. The total production potential decreased in southern China and increased in northern China. Furthermore, the center of growth of the production potential moved gradually from northeastern China to northwestern China. The net decrease in the production potential was 2.97 million tons, which occupied 0.29% of the national total actual production in 2010. Third, obvious differences in the production potential in response to farmland changes from 1990 to 2000 and from 2000 to 2010 were detected. The net increase in the production potential during the first decade was 10.11 million tons and mainly distributed in the Northeast China Plain and the arid and semi-arid regions of northern China. The net decrease in the production potential during the next decade was 13.08 million tons and primarily distributed in the middle and lower reaches of the Yangtze River region and the Huang-Huai-Hai Plain. In general, the reason for the increase in the production potential during the past two decades might be due to the reclamation of grasslands, woodlands and unused land, and the reason for the decrease in the production potential might be urbanization that occupied the farmland and Green for Grain Project, which returned farmland to forests and grasslands.  相似文献   

4.
Based on the daily maximum temperature data covering the period 1961-2005, temporal and spatial characteristics and their changing in mean annual and monthly high temperature days(HTDs)and the mean daily maximum temperature(MDMT)during annual and monthly HTDs in East China were studied.The results show that the mean annual HTDs were 15.1 and the MDMT during annual HTDs was 36.3℃in the past 45 years.Both the mean annual HTDs and the MDMT during annual HTDs were negative anomaly in the1980s and positive anomaly in the other periods of time,oscillating with a cycle of about 12-15 years.The mean annual HTDs were more in the southern part,but less in the northern part of East China.The MDMT during annual HTDs was higher in Zhejiang,Anhui and Jiangxi provinces in the central and western parts of East China.The high temperature process(HTP) was more in the southwestern part,but less in northeastern part of East China.Both the HTDs and the numbers of HTP were at most in July,and the MDMT during monthly HTDs was also the highest in July.In the first 5 years of the 21st century,the mean annual HTDs and the MDMT during annual HTDs increased at most of the stations,both the mean monthly HTDs and the MDMT during monthly HTDs were positive anomalies from April to October,the number of each type of HTP generally was at most and the MDMT in each type of HTP was also the highest.  相似文献   

5.
三江源地区1961-2010年降水时空变化(英文)   总被引:2,自引:0,他引:2  
Based on a monthly dataset of precipitation time series (1961-2010) from 12 meteorological stations across the Three-River Headwater Region (THRHR) of Qinghai Province, China, the spatio-temporal variation and abrupt change analysis of precipitation were examined by using moving average, linear regression, spline interpolation, the Mann-Kendall test and so on. Major conclusions were as follows. (1) The long-term annual and seasonal precipitation in the study area indicated an increasing trend with some oscillations during 1961-2010; however, the summer precipitation in the Lantsang (Lancang) River Headwater Region (LARHR), and the autumn precipitation in the Yangtze River Headwater Region (YERHR) of the THRHR decreased in the same period. (2) The amount of annual precipitation in the THRHR and its three sub-headwater regions was greater in the 1980s and 2000s. The springs were fairly wet after the 1970s, while the summers were relatively wet in the 1960s, 1980s and 2000s. In addition, the amount of precipitation in the autumn was greater in the 1970s and 1980s, but it was relatively less for the winter precipitation, except in the 1990s. (3) The normal values of spring, summer, winter and annual precipitation in the THRHR and its three sub-headwater regions all increased, but the normal value of summer precipitation in the LARHR had a negative trend and the normal value of winter precipitation declined in general. (4) The spring and winter precipitation increased in most of the THRHR. The summer, autumn and annual precipitation increased mainly in the marginal area of the west and north and decreased in the regions of Yushu, Zaduo, Jiuzhi and Banma. (5) The spring and winter precipitation in the THRHR and its three sub-headwater regions showed an abrupt change, except for the spring precipitation in the YARHR. The abrupt changes of spring precipitation were mainly in the late 1980s and early 1990s, while the abrupt changes of winter precipitation were primary in the mid-to late 1970s. This research would be helpful for further understanding the trends and periodicity of precipitation and for watershed-based water resource management in the THRHR.  相似文献   

6.
SHI Jun  TANG Xu  CUI Linli 《地理学报》2008,18(3):283-294
Based on the daily maximum temperature data covering the period 1961–2005, temporal and spatial characteristics and their changing in mean annual and monthly high temperature days (HTDs) and the mean daily maximum temperature (MDMT) during annual and monthly HTDs in East China were studied. The results show that the mean annual HTDs were 15.1 and the MDMT during annual HTDs was 36.3℃ in the past 45 years. Both the mean annual HTDs and the MDMT during annual HTDs were negative anomaly in the1980s and positive anomaly in the other periods of time, oscillating with a cycle of about 12–15 years. The mean annual HTDs were more in the southern part, but less in the northern part of East China. The MDMT during annual HTDs was higher in Zhejiang, Anhui and Jiangxi provinces in the central and western parts of East China. The high temperature process (HTP) was more in the southwestern part, but less in northeastern part of East China. Both the HTDs and the numbers of HTP were at most in July, and the MDMT during monthly HTDs was also the highest in July. In the first 5 years of the 21st century, the mean annual HTDs and the MDMT during annual HTDs increased at most of the stations, both the mean monthly HTDs and the MDMT during monthly HTDs were positive anomalies from April to October, the number of each type of HTP generally was at most and the MDMT in each type of HTP was also the highest.  相似文献   

7.
How species diversity–productivity relationships respond to temporal dynamics and land use is still not clear in semi-arid grassland ecosystems. We analyzed seasonal changes of the relationships between vegetation cover, plant density, species richness, and aboveground biomass in grasslands under grazing and exclosure in the Horqin Sandy Land of northern China. Our results showed that in grazed and fenced grassland, vegetation cover, richness, and biomass were lower in April than in August, whereas plant density showed a reverse trend. Vegetation cover during the growing season and biomass in June and August were higher in fenced grassland than in grazed grassland, whereas plant density in April and June was lower in fenced grassland than in grazed grassland. A negative relationship between species richness and biomass was found in August in fenced grassland, and in grazed grassland the relationship between plant density and biomass changed from positive in April to negative in August. The relationship between the density of the dominant plant species and the total biomass also varied with seasonal changes and land use (grazing and exclosure). These results suggest that long-term grazing, seasonal changes, and their interaction significantly influence vegetation cover, plant density, and biomass in grasslands. Plant species competition in fenced grassland results in seasonal changes of the relationship between species richness and biomass. Long-term grazing also affects seasonal changes of the density and biomass of dominant plant species, which further affects the seasonal relationship between plant density and biomass in grasslands. Our study demonstrates the importance of temporal dynamics and land use in understanding the relationship between species richness and ecosystem function.  相似文献   

8.
三江源区径流演变及其对气候变化的响应(英文)   总被引:2,自引:2,他引:0  
Runoff at the three time scales(non-flooding season,flooding season and annual period) was simulated and tested from 1958 to 2005 at Tangnaihai(Yellow River Source Region:YeSR),Zhimenda(Yangtze River Source Region:YaSR) and Changdu(Lancang River Source Region:LcSR) by hydrological modeling,trend detection and comparative analysis.Also,future runoff variations from 2010 to 2039 at the three outlets were analyzed in A1B and B1 scenarios of CSIRO and NCAR climate model and the impact of climate change was tested.The results showed that the annual and non-flooding season runoff decreased significantly in YeSR,which decreased the water discharge to the midstream and downstream of the Yellow River,and intensified the water shortage in the Yellow River Basin,but the other two regions were not statistically significant in the last 48 years.Compared with the runoff in baseline(1990s),the runoff in YeSR would decrease in the following 30 years(2010-2039),especially in the non-flooding season.Thus the water shortage in the midstream and downstream of the Yellow River Basin would be serious continuously.The runoff in YaSR would increase,especially in the flooding season,thus the flood control situation would be severe.The runoff in LcSR would also be greater than the current runoff,and the annual and flooding season runoff would not change significantly,while the runoff variation in the non-flooding season is uncertain.It would increase significantly in the B1 scenario of CSIRO model but decrease significantly in B1 scenario of NCAR model.Furthermore,the most sensitive region to climate change is YaSR,followed by YeSR and LcSR.  相似文献   

9.
Based on the measured discharge,sediment load,and cross-sectional data from 1986 to 2015 for the lower Yellow River,changes in the morphological parameters(width,depth,and cross-sectional geomorphic coefficient)of the main channel are analyzed in this paper.The results show that before the operation of the Xiaolangdi Reservoir(XLDR)from 1986 to 1999,the main channel shrunk continually,with decreasing width and depth.The rate of reduction in its width decreased along the river whereas that of depth increased in the downstream direction.Because the rate of decrease in the width of the main channel was greater than that in channel depth,the cross-sectional geomorphic coefficient decreased in the sub-reach above Gaocun.By contrast,for the sub-reach below Gaocun,the rate of decrease in channel width was smaller than that in channel depth,and the cross-sectional geomorphic coefficient increased.Once the XLDR had begun operation,the main channel eroded continually,and both its width and depth increased from 2000 to 2015.The rate of increase in channel width decreased in the longitudinal direction,and the depth of the main channel in all sub-reaches increased by more than 2 m.Because the rate of increase in the depth of the main channel was clearly larger than that of its width,the cross-sectional geomorphic coefficient decreased in all sub-reaches.The cross-sectional geometry of the main-channel of the lower Yellow River exhibited different adjustment patterns before and after the XLDR began operation.Before its operation,the main channel mainly narrowed in the transverse direction and silted in the vertical direction in the sub-reach above Aishan;in the sub-reach below Aishan,it primarily silted in the vertical direction.After the XLDR began operation,the main channel adjusted by widening in the transverse direction and deepening in the vertical direction in the sub-reach above Aishan;in the sub-reach below it,the main channel adjusted mainly by deepening in the vertical direction.Compared with the rates of decrease in the width and depth of the main channel during the siltation period,the rate of increase in channel width during the scouring period was clearly smaller while the rate of increase in channel depth was larger.After continual siltation and scouring from 1986 to 2015,the cross-sectional geometry of the main-channel changed from wide and shallow to relatively narrow and deep.The pattern of adjustment in the main channel was closely related to the water and sediment conditions.For the braided reach,the cross-sectional geomorphic coefficient was negatively correlated with discharge and positively correlated with suspended sediment concentration(SSC)during the siltation period.By contrast,the cross-sectional geomorphic coefficient was positively correlated with discharge and negatively correlated with SSC during the scouring period.For the transitional and meandering reaches,the cross-sectional geomorphic coefficient was negatively correlated with discharge and positively correlated with SSC.  相似文献   

10.
The runoff of some rivers in the world especially in the arid and semi-arid areas has decreased remarkably with global or regional climate change and enhanced human activities.The runoff decrease in the arid and semi-arid areas of northern China has brought severe problems in livelihoods and ecology.To reveal the variation characteristics,trends of runoff and their influencing factors have been important scientific issues for drainage basin management.The objective of this study was to analyze the variation trends of the runoff and quantitatively assess the contributions of precipitation and human activities to the runoff change in the Huangfuchuan River Basin based on the measured data in 1960-2008.Two inflection points(turning years) of 1979 and 1998 for the accumulative runoff change,and one inflection point of 1979 for the accumulative precipitation change were identified using the methods of accumulative anomaly analysis.The linear relationships between year and accumulative runoff in 1960-1979,1980-1997 and 1998-2008 and between year and accumulative precipitation in 1960-1979 and 1980-2008 were fitted.A new method of slope change ratio of accumulative quantity(SCRAQ) was put forward and used in this study to calculate the contributions of different factors to the runoff change.Taking 1960-1979 as the base period,the contribution rate of the precipitation and human activities to the decreased runoff was 36.43% and 63.57% in 1980-1997,and 16.81% and 83.19% in 1998-2008,respectively.The results will play an important role in the drainage basin management.Moreover,the new method of SCRAQ can be applied in the quantitative evaluation of runoff change and impacts by different factors in the river basin of arid and semi-arid areas.  相似文献   

11.
塔里木河流域水资源变化的特点与趋势   总被引:30,自引:1,他引:29  
徐海量  叶茂  宋郁东  魏军 《地理学报》2005,60(3):487-494
通过时间序列分析了塔里木河流域山区1961~2002年的降水和温度变化, 源流干流水分的消耗, 并对这些指标进行了KENDALL秩次相关检验。结果显示: 塔里木河源流山区降水和温度均有增加,但是降水增加的趋势在?琢 = 0.05水平上不显著, 温度升高的趋势显著; 塔里木河流域几个源流水量增加, 特别是在1994~2002年,年平均径流量比多年平均增加了25.163×108 m3/a, 而上游三源流补给干流水量只增加0.9985×108 m3/a, 塔里木河干流沿程各站的径流量呈现显著的线性递减趋势, 表明连续十年的丰水期并没有改变干流生态环境恶化的局面; 如果三源流来水以正常年份计算 (1957~2003年平均来水量), 塔里木河干流来水量每年只有22.57×108 m3, 那样塔里木河流域的生态安全将更令人担忧。  相似文献   

12.
The method of time series is applied to analyze the variation of precipitation and temperature from 1961 to 2002 in the mountainous areas of the Tarim River Basin, as well as water consumption in the headstream and mainstream areas. Those hydrologic parameters are verified. Quantitative results indicate that the precipitation and temperature in the headstream areas have an increasing trend to different extent. The increasing trend of precipitation is less significant than that of the temperature (α= 0.05). Runoff of three headstreams also increases especially from 1994 to 2002. Compared with the perennial runoff, the annual runoff has increased by 25.163×108 m3/a. However, inflows of the mainstream areas has only increased by 0.9985×108 m3/a. So the runoff at the different hydrologic stations in the headstream areas has a linear decreasing trend. It is shown that the degraded trend of eco-environment of the Tarim River Basin hardly changes in the special water period for ten consecutive years. Given runoff of three headstreams is accounted in normal period from 1957 to 2003, the annual runoff of the headstream areas would be only 22.57×108 m3. Therefore, more attention should be given to ecological safety of the Tarim River Basin.  相似文献   

13.
塔里木河源流区气候变化和年径流量关系初探   总被引:23,自引:10,他引:13  
徐海量  叶茂  宋郁东 《地理科学》2007,27(2):219-224
基于1957~2003年塔里木河流域源流区长期监测资料,分析塔里木河流域源流区的主要河流年径流量和相应气温、降水变化的特点,探讨流域内气候变化与水资源量变化的关系。利用非参数检验的方法,分析温度、降水变化与径流量变化的关联性和一致性。结果显示:在塔里木河流域源流区,温度在0.05水平上呈现单调递增的趋势,降水则表现为不显著增加的走势,而径流量基本均出现了递增现象;从参数检验和非参数分析的结果看,温度升高与径流量增加的关联趋势更明显。  相似文献   

14.
新疆塔里木河断流趋势分析与减缓对策   总被引:9,自引:3,他引:6  
塔里木河断流的趋势日益严峻,主要表现在断流长度不断增加,断流时间持续加长,如果这种趋势不能遏制,将大大增加向塔里木河下游生态输水的难度,对流域生态安全和下游绿色走廊的保护产生重大影响。通过对塔里木河断流趋势和水文情势的分析计算,探讨了引起塔里木河断流点上移、断流时间和断流河道加长的原因以及河道断流态势进一步发展可能给塔里木河流域生态安全带来的影响。进一步分析塔里木河流域水土资源管理和水情变化与河道断流的关系,提出塔里木河上游源流区灌溉面积增加是导致进入干流水量减少、河道断流的主要原因,流域大面积垦荒和用水量增加加剧了河道断流趋势的发展。建议实施流域水资源统一管理,强化塔里木河流域管理局管理职能,加强对土地资源的管理,加快对天山地区岩溶地下水的研究与开发,关注山区水库修建可能对塔里木河断流和生态带来的新问题。  相似文献   

15.
近50a来塔里木河干流年径流量变化趋势及预测   总被引:3,自引:1,他引:2  
根据塔里木河干流1957-2008年的年径流量监测数据,利用Mann-Kendall非参数技术检验和R/S法,对干流年径流量时间序列变化趋势进行分析,并在此基础上采用滑动t检验法和Mann-Kendall法对其突变点进行检验,最后运用方差分析外推法和叠加趋势预测模型对干流水文周期和未来径流量变化进行分析和预测.结果显示...  相似文献   

16.
气候变化对河北省海河流域径流量的影响   总被引:2,自引:0,他引:2  
邵爱军  左丽琼  王丽君 《地理研究》2010,29(8):1502-1509
利用河北省境内海河流域51个气象站、68个水文站1956~2000年近50年的气象、径流量数据,分析了气象要素和径流量的变化规律。河北省境内海河流域多年平均地表径流量为67.0×108m3,从20世纪 50 年代至 90 年代地表径流量呈逐渐减小的趋势,50年代为105.3×108m3,90年代为54.7×108m3。地表径流量随降水量的减少而减小,随气温的升高而下降,用回归方法建立的径流量与气象要素之间的模型为对数模型。根据未来气候变化情景对河北省海河流域径流量的预测:2030年为70.0~76.8×108m3,2050年为69.8~76.9×108m3。  相似文献   

17.
Taking the Chaohe River Basin above the Miyun Reservoir in North China as a study area, the characteristics and variation trends of annual runoff and annual precipitation during 1961–2005 were analyzed applying Mann-Kendall test method on the basis of the hydrologic data of the major hydrological station (Xiahui Station) located at the outlet of the drainage basin and the meteorological data of 17 rainfall stations. Human activities including water conservancy projects construction and water diversion as well as implementation of soil and water conservation from 1961 to 2005 were carefully studied using time series contrasting method. The referenced period (1961–1980) that influenced slightly by human activities and the compared period (1981–2005) that influenced significantly by water conservancy and soil conservation measures were identified according to the runoff variation process analysis and abrupt change points detection during 1961–2005 applying double accumulative curve method, mean shift t-test method and Mann-Kendall mutation test technique. Based on the establishment of a rainfall-runoff empirical statistical model, impacts and the runoff-reducing effects of water conservancy and soil conservation measures on runoff reduction were evaluated quantitatively. The major results could be summarized as follows: (1) The annual precipitation in the drainage basin tends to decrease while the runoff has declined markedly since the 1960s, the average annual runoff from 1991 to 2000 was only 90.9% in proportion to that from 1961 to 1970. (2) The annual runoff variations in the drainage basin are significantly related to human activities. (3) During 1981–1990, 1991–2000, 2001–2005 and 1981–2005, the average annual runoff reduction amounts were 1.15×108, 0.28×108, 1.10×108 and 0.79×108 m3 respectively and the average annual runoff-reducing effects were 31.99%, 7.13%, 40.71% and 23.79% accordingly. Runoff-reducing effects by water conservancy and soil conservation measures are more prominent in the low water period.  相似文献   

18.
塔里木河流域60 a来天然径流变化趋势分析   总被引:1,自引:1,他引:0       下载免费PDF全文
利用塔里木河流域近60 a的地表径流、气温和降水量资料,通过趋势分析、突变检验、年代际分析等方法分析了塔里木河流域地表径流变化的时空差异性,探讨了塔里木河流域天然径流变化对气温、降水量变化的响应。研究表明:近60 a来塔里木河流域三源流径流整体存在增加的趋势,但干流径流存在减少的趋势;塔里木河流域三源流增加强度在1993年前后从强到弱依次为阿克苏河、叶尔羌河、和田河,进入2000年后从强到弱依次为和田河、叶尔羌河、阿克苏河;塔里木河流域三源流径流强度增加主要受降水增加和由气温增加引起的融雪径流增加的双重影响。  相似文献   

19.
人类活动干预后的塔里木河水资源持续利用问题*   总被引:35,自引:2,他引:33  
李新  周宏飞 《地理研究》1998,17(2):171-177
人类活动的加剧,使干旱区河流原有的水文状态发生了很大变化.而如何持续利用变化后的地表水资源,是保证干旱区持续发展的前提之一.该文分析了人类活动对新疆塔里木河流域水文干预的后果,认为人类活动使河流下游径流量减少,水量的时空分布改变,径流规律趋于复杂化.指出,维持一定的河流水量,整治河道和改变用水模式是持续利用塔里木河水资源的保证.  相似文献   

20.
新疆塔里木河三源流径流量变化趋势分析   总被引:5,自引:0,他引:5  
运用非参数检验、R/S分析和小波分析等方法对塔里木河三源流的年径流序列进行了分析。结果表明:阿克苏河与叶儿羌河的突变点在1993年,而和田河在1978年;阿克苏河径流呈显著增加趋势而叶儿羌河增加不显著,结合其Hurst指数可知,在未来阿克苏河仍将保持增加走势而叶尔羌河将转变为减少;和田河径流呈轻微的减少趋势,其Hurst指数接近于0.5,具有随机性,不可做长程预测;阿克苏河在6、18、22 a周期性明显,和田河主周期为9和17 a,而叶尔羌河在3、9、13和17 a处周期性明显。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号