首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The Qinling Mountains, located at the junction of warm temperate and subtropical zones, serve as the boundary between north and south China. Exploring the sensitivity of the response of vegetation there to hydrothermal dynamics elucidates the dynamics and mechanisms of the main vegetation types in the context of changes in temperature and moisture. Importance should be attached to changes in vegetation in different climate zones. To reveal the sensitivity and areal differentiation of vegetation responses to hydrothermal dynamics, the spatio-temporal variation characteristics of the normalized vegetation index(NDVI) and the standardized precipitation evapotranspiration index(SPEI) on the northern and southern slopes of the Qinling Mountains from 2000 to 2018 are explored using the meteorological data of 32 meteorological stations and the MODIS NDVI datasets. The results show that: 1) The overall vegetation coverage of the Qinling Mountains improved significantly from 2000 to 2018. The NDVI rise rate and area ratio on the southern slope were higher than those on the northern slope, and the vegetation on the southern slope improved more than that on the northern slope. The Qinling Mountains showed an insignificant humidification trend. The humidification rate and humidification area of the northern slope were greater than those on the southern slope. 2) Vegetation on the northern slope of the Qinling Mountains was more sensitive to hydrothermal dynamics than that on the southern slope. Vegetation was most sensitive to hydrothermal dynamics from March to June on the northern slope, and from March to May(spring) on the southern slope. The vegetation on the northern and southern slopes was mainly affected by hydrothermal dynamics on a scale of 3–7 months, responding weakly to hydrothermal dynamics on a scale of 11–12 months. 3) Some 90.34% of NDVI and SPEI was positively correlated in the Qinling Mountains. Spring humidification in most parts of the study area promoted the growth of vegetation all the year round. The sensitivity of vegetation responses to hydrothermal dynamics with increasing altitude increased first and then decreased. Elevations of 800 to 1200 m were the most sensitive range for vegetation response to hydrothermal dynamics. The sensitivity of the vegetation response at elevations of 1200–3000 m decreased with increasing altitude. As regards to vegetation type, grass was most sensitive to hydrothermal dynamics on both the northern and southern slopes of the Qinling Mountains; but most other vegetation types on the northern slope were more sensitive to hydrothermal dynamics than those on the southern slope.  相似文献   

2.
Based on monthly mean, maximum, and minimum air temperature and monthly mean precipitation data from 10 meteorological stations on the southern slope of the Mt. Qomolangma region in Nepal between 1971 and 2009, the spatial and temporal characteristics of climatic change in this region were analyzed using climatic linear trend, Sen's Slope Estimates and Mann-Kendall Test analysis methods. This paper focuses only on the southern slope and attempts to compare the results with those from the northern slope to clarify the characteristics and trends of climatic change in the Mt. Qomolangma region. The results showed that: (1) between 1971 and 2009, the annual mean temperature in the study area was 20.0℃, the rising rate of annual mean temperature was 0.25℃/10a, and the temperature increases were highly influenced by the maximum temperature in this region. On the other hand, the temperature increases on the northern slope of Mt. Qomolangma region were highly influenced by the minimum temperature. In 1974 and 1992, the temperature rose noticeably in February and September in the southern region when the increment passed 0.9℃. (2) Precipitation had an asymmetric distribution; between 1971 and 2009, the annual precipitation was 1729.01 mm. In this region, precipitation showed an increasing trend of 4.27 mm/a, but this was not statistically significant. In addition, the increase in rainfall was mainly concentrated in the period from April to October, including the entire monsoon period (from June to September) when precipitation accounts for about 78.9% of the annual total. (3) The influence of altitude on climate warming was not clear in the southern region, whereas the trend of climate warming was obvious on the northern slope of Mt. Qomolangma. The annual mean precipitation in the southern region was much higher than that of the northern slope of the Mt. Qomolangma region. This shows the barrier effect of the Himalayas as a whole and Mt. Qomolangma in particular.  相似文献   

3.
In this study, a monthly dataset of temperature time series (1961-2010) from 12 meteorological stations across the Three-River Headwater Region of Qinghai Province (THRHR) was used to analyze the climate change. The temperature variation and abrupt change analysis were examined by using moving average, linear regression, Spline interpo-lation, Mann-Kendall test and so on. Some important conclusions were obtained from this research, which mainly contained four aspects as follows. (1) There were several cold and warm fluctuations for the annual and seasonal average temperature in the THRHR and its three sub-headwater regions, but the temperature in these regions all had an obviously rising trend at the statistical significance level, especially after 2001. The spring, summer, autumn and annual average temperature increased evidently after the 1990s, and the winter average temperature exhibited an obvious upward trend after entering the 21st century. Except the standard value of spring temperature, the annual and seasonal temperature standard value in the THRHR and its three sub-headwater regions increased gradually, and the upward trend for the standard value of winter average temperature indicated significantly. (2) The tendency rate of annual average temperature in the THRHR was 0.36℃10a?1, while the tendency rates in the Yellow River Headwater Region (YERHR), Lancangjiang River Headwater Region (LARHR) and Yangtze River Headwater Region (YARHR) were 0.37℃10a?1, 0.37℃10a?1 and 0.34℃10a?1 respectively. The temperature increased significantly in the south of Yushu County and the north of Nangqian County. The rising trends of temperature in winter and autumn were higher than the upward trends in spring and summer. (3) The abrupt changes of annual, summer, autumn and winter average temperature were found in the THRHR, LARHR and YARHR, and were detected for the summer and autumn average temperature in the YERHR. The abrupt changes of annual and summer average temperatures were mainly in the late 1990s, while the abrupt changes of autumn and winter average temperatures ap-peared primarily in the early 1990s and the early 21st century respectively. (4) With the global warming, the diversities of altitude and underlying surface in different parts of the Tibetan Plateau were possibly the main reasons for the high increasing rate of temperature in the THRHR.  相似文献   

4.
The features of physical geography in the transitional region between Qinling Mountains and Huanghuai Plain possess transitional characters evidently in two directions: one is from the western mountain to the eastern plain and the other is from southern subtropical zone to northern temperate zone. Torrential rain, especially strong torrential rain is frequent in the transitional region, and there are many torrential rain centers. A majority of torrential rain is distributed among 100-200 m asl. The winter temperature at 100-400 m asl is higher than that in Huanghuai Plain whose altitude is lower than that of the transitional region, and the highest temperature in January appears at 350-400 m asl.The thickness of warm slope belt in the transitional region varies from 100 m to 250 m asl. The formation of torrential rain and warm slope belt is the result of joint action of atmospheric circulation and local terrain. Frequent torrential rains and warm slope belt had tremendous influences on the soil properties, plant distribution and local climate in the transitional region.  相似文献   

5.
1960-2009年西南地区极端干旱气候变化(英文)   总被引:9,自引:1,他引:8  
Based on the daily data of temperature and precipitation of 108 meteorological stations in Southwest China from 1960 to 2009, we calculate the monthly and yearly surface humid indexes, as well as the extreme drought frequency. According to the data, the temporal and spatial characteristics of the extreme drought frequency in inter-annual, inter-decadal, summer monsoon period and winter monsoon period are analyzed. The results are indicated as follows. (1) In general, the southwestern Sichuan Basin, southern Hengduan Mountains, southern coast of Guangxi and northern Guizhou are the areas where the extreme drought frequency has significantly increased in the past 50 years. As for the decadal change, from the 1960s to the 1980s the extreme drought frequency has presented a decreasing trend, while the 1990s is the wettest decade and the whole area is turning wet. In the 2000s, the extreme drought frequency rises quickly, but the regional differences reduce. (2) During summer monsoon period, the extreme drought frequency is growing, which generally occurs in the high mountains around the Sichuan Basin, most parts of Guangxi and "the broom-shaped mountains" in Yunnan. It is distinct that the altitude has impacts on the ex-treme drought frequency; during winter monsoon period, the area is relatively wet and the extreme drought frequency is decreasing. (3) During summer monsoon period, the abrupt change is observed in 2003, whereas the abrupt change during winter monsoon period is in 1989. The annual extreme drought frequency variation is a superposition of abrupt changes during summer monsoon and winter monsoon periods. The departure sequence vibration of annual extreme drought frequency is quasi-5 years and quasi-12 years.  相似文献   

6.
Study on hydroclimatological changes in the mountainous river basins has attracted great interest in recent years. Changes in temperature, precipitation and river discharge pattern could be considered as indicators of hydroclimatological changes of the river basins. In this study, the temperatures (maximum and minimum), precipitation, and discharge data from 1980 to 2009 were used to detect the hydroclimatological changes in the Bagmati River Basin, Nepal. Simple linear regression and Mann-Kendall test statistic were used to examine the significant trend of temperature, precipitation, and discharge. Increasing trend of temperature was found in all seasons, although the change rate was different in different seasons for both minimum and maximum temperatures. However, stronger warming trend was found in maximum temperature in comparison to the minimum in the whole basin. Both precipitation and discharge trend were increasing in the pre-monsoon season, but decreasing in the post-monsoon season. The significant trend of precipitation could not be observed in winter, although discharge trend was decreasing. Furthermore, the intensity of peak discharge was increasing, though there was not an obvious change in the intensity of maximum precipitation events. It is expected that all these changes have effects on agriculture, hydropower plant, and natural biodiversity in the mountainous river basin of Nepal.  相似文献   

7.
Hussain  Mian Sabir  Heo  Inhye  Im  Sujeong  Lee  Seungho 《地理学报(英文版)》2021,31(3):369-388
This paper presents a detailed account of the effect of shipping activity on the increasing trends of air temperatures in the Canadian Arctic region for the period of 1980–2018. Increasing trend of temperature has gained significant attention with respect to shipping activities and sea ice area in the Canadian Arctic. Temperature, sea ice area and shipping traffic datasets were investigated, and simple linear regression analyses were conducted to predict the rate of change(per decade) of the average temperature, considering winter(January) and summer(July) seasons. The results indicate that temperature generally increased over the studied region. Significant warming trend was observed during July, with an increase of up to 1℃, for the Canadian Arctic region. Such increasing trend of temperature was observed during July from the lower to higher latitudes. The increase in temperature during July is speculated to increase the melting of ice. Results also show a decline in sea ice area has a significant positive effect on the shipping traffic, and the numbers of marine vessel continue to increase in the region. The increase in temperature causes the breaking of sea ice due to shipping activities over northern Arctic Canada.  相似文献   

8.
新疆气候时空变化特征及其趋势(英文)   总被引:8,自引:1,他引:7  
Temperature and precipitation time series datasets from 1961 to 2005 at 65 meteorological stations were used to reveal the spatial and temporal trends of climate change in Xinjiang, China. Annual and seasonal mean air temperature and total precipitation were analyzed using Mann-Kendall (MK) test, inverse distance weighted (IDW) interpolation, and R/S methods. The results indicate that: (1) both temperature and precipitation increased in the past 45 years, but the increase in temperature is more obvious than that of precipitation; (2) for temperature increase, the higher the latitude and the higher the elevation the faster the increase, though the latitude has greater influence on the increase. Northern Xinjiang shows a faster warming than southern Xinjiang, especially in summer; (3) increase of precipitation occurs mainly in winter in northern Xinjiang and in summer in southern Xinjiang. Ili, which has the most precipitation in Xinjiang, shows a weak increase of precipitation; (4) although both temperature and precipitation increased in general, the increase is different inside Xinjiang; (5) Hurst index (H) analysis indicates that climate change will continue the current trends.  相似文献   

9.
Data of flood, drought, hailstorms, and low temperature events in Xinjiang from 1949 to 2012 were analyzed with the diffusion method to assess the risk of the most common types of disasters in Xinjiang. It was proved that the frequency and intensity of meteorological disasters of the study area showed an increasing trend associated with global warming. Among the four types of disasters, surpass probability of drought was the largest, followed by hailstorm, low temperature and flood in turn. Moreover, the wavelet method analysis revealed that greater oscillations had occurred since 2000, which may be associated with the occurrence of extreme climatic changes. The spatial distribution of frequencies reveals that the northern slope of Tianshan Mountains is a multiple disaster area, the southern slope of Tianshan is the area where more floods and hailstorms occur, and the west of Turpan-Hami Basin is the area wind is prevalent. The relationships between disaster-affected areas and corresponding meteorological and socio-economic indexes were also analyzed. It indicated that there were significant positive correlations between the areas affected and the most meteorological and socio-economic indicators except the grain acreage.  相似文献   

10.
All rivers in the Hexi inland region of Gansu Province, China, originate from the northern slope of the Qilian Mountains. They are located in the southern portion of the region and respectively belong to the three large river systems from east to west, the Shiyang, Heihe and Shule river basins. These rivers are supplied by precipitation, snowmelt and ice-melt runoff from the Qilian Mountain area. Therefore, changes of precipitation and temperature in the upstream watersheds of these rivers have an important effect on changes of mountainous runoff and reasonable utilization of water resources in this region. For this reason, the Qilian Mountain area, upstream watersheds and runoff forming areas of these rivers are chosen as the study area. The change characteristics and variation trend of temperature and precipitation in this area under the backdrop of global warming are analyzed based on observational data of relational weather and hydrologic stations in the area. Results show that temperatures in the upriver mountain areas of these three large river basins have been increasing, although the increasing degree is differentially affected by global warming. The rising extent of annual and seasonal temperatures in the upstream mountain area of the Shule river basin located in the western Qilian Mountains, were all largest over the past 50 years. Precipitation in the upstream mountain areas of Hexi region’ three river basins located respectively in the western, middle and eastern Qilian Mountains have been presenting an increasing trend to varying degrees as a whole for more than 50 years. This means that climate in the upstream mountain areas of Hexi region’ three river basins are becoming increasingly warmer and moister over the past 50 years, which will be very good for the ecological environment and agricultural production in the region.  相似文献   

11.
1961-2010年武威市气温日较差变化趋势及影响因子分析   总被引:3,自引:0,他引:3  
利用1961-2010年武威市5个气象站逐日地面最高气温、最低气温及年平均气温、日照时数、蒸发量、降水量、相对湿度、平均风速等观测资料,运用趋势系数法系统分析了该区域近50年气温日较差的时空分布及强度特征,采用多元线性回归中的标准化回归系数分析了影响气温日较差的气象因子。结果表明:受天气系统、地形地貌以及海拔等影响,武威市气温日较差低海拔地区大于高海拔地区。各地年、年代气温日较差总体呈减小趋势,民勤县、古浪县的减小趋势尤为显著,年平均气温日较差的时间序列存在着6~8年的准周期变化;各季节气温日较差变化趋势不太一致,总体上呈减小趋势;月气温日较差变化也存在差异,除天祝藏族自治县外,3月和9月为两个低谷,4-6月和10月为两个高峰。年气温日较差极大值和极小值均呈减小趋势。年最高、最低气温均呈升高趋势,年气温日较差与年最高、最低气温呈相反的变化趋势,最低气温的快速升高和最高气温的缓慢升高是气温日较差减小的直接原因,最低气温显著升高的季节气温日较差的减小趋势更大。影响武威市气温日较差的主要因子是蒸发量、平均气温、平均风速、日照时数,关联性最强的是蒸发量,其次是平均气温,其中气温日较差与日照时数、蒸发量、相对湿度以及平均风速呈正相关,与平均气温和降水量呈负相关。影响各地气温日较差的主要因子有所不同。  相似文献   

12.
中国西北干旱区地-气温差变化成因分析   总被引:3,自引:1,他引:2  
符睿  韦志刚  文军  李振朝 《中国沙漠》2010,30(6):1442-1449
利用1961—2000年中国西北干旱区49个气象台站百叶箱气温、0 cm地温、降水和近地层风速月平均资料,以及NCEP/NCAR再分析月平均资料,分析了我国西北干旱区地-气温差变化的原因。结果表明,20世纪后40 a西北干旱区冬季地-气温差呈减小趋势,其可能原因是20世纪80年代后全球进一步变暖,西北干旱区对流层中层高度场升高、气温升高,风场易出现反气旋式环流距平,寒潮活动减少,近地层风速减弱使得气温增暖高于地温。而春初对流层中层高度场偏低时,气温偏低,降水偏多,风场易出现气旋式环流距平,近地层风速减弱使得气温增暖低于地温,所以春初地-气温差呈上升趋势。  相似文献   

13.
祁连山青海云杉林树线温度特征   总被引:4,自引:0,他引:4  
树线温度对于解释树线位置及树线形成机理、预测树线对于气候变化的响应具有重要意义。通过在祁连山北坡青海云杉林郁闭林内、树线地带、高山灌丛分布带设置土壤温度自动观测仪器,初步分析了青海云杉林树线温度特征。结果表明:(1)树线处青海云杉根际土壤温度(10cm深度)生长季平均值为4.9℃,低于全球树线生长季平均土壤温度(6.7℃)。(2)生长季长度方面,青海云杉树线(104天)与亚北极(Subarctic,103天)、北方林(Boreal,106天)树线相近。(3)高山灌丛分布带在海拔上高于树线地带,但灌丛地带根际土壤生长季节均温(6.4℃),生长季长度(122天)均高于树线地带,显示了树线之上灌丛相对于乔木生活型有更佳的保持根际土壤热量的优势,从而也成为在树线之上灌丛能够很好生长,并且取代乔木的重要因素。  相似文献   

14.
全新世温度变化是理解现代变暖和预测未来温度变化的重要依据,但目前根据地质记录重建的温度变化趋势与气候模拟重建的温度变化趋势存在显著矛盾。依据已经建立了可靠年代的新疆天山北麓鹿角湾全新世黄土-古土壤序列(LJW10剖面),选取4个重要时段的黄土-古土壤样品,开展支链GDGTs(br-GDGTs)测量,采用国际上新提出的GDGTs分析方法和MBT'5ME指标,重建了该剖面全新世以来年均温度变化的初步框架。结果发现,采用新的MBT'5ME指标重建的表层样品的温度更接近现代气象记录的实际温度,利用国际新的GDGTs分析及计算方法重建的全新世温度自早全新世以来逐步升高,与已有气候模拟重建的全新世温度变化趋势一致。应当指出的是,本文只是使用新GDGTs分析方法和MBT'5ME指标重建全新世温度变化的初步探讨,今后不但需要开展研究方法的进一步探讨,而且需要开展更高时间分辨率和不同区域黄土-古土壤记录的GDGTs温度重建研究。  相似文献   

15.
巴丹吉林沙漠腹地地温变化特征   总被引:2,自引:1,他引:1  
以巴丹吉林沙漠苏木巴润吉林观测站地温与气象数据为基础,分析巴丹吉林沙漠腹地地温变化特征。结果表明:(1)巴丹吉林沙漠地温、气温日变化特征明显,最高值出现时刻为17:00左右,相对东部地区滞后3 h;不同季节地温与气温变化趋势基本保持一致,地温变化相对气温、太阳辐射明显滞后;(2)地温在11月末至2月降至0 ℃以下,深度60 cm下全年高于0 ℃,地温变化幅度随深度增加逐渐减小;(3)地温变化幅度直接由太阳辐射强度决定,但影响地温的环境因子存在季节性特征,春、秋、冬季主要影响因子为气温、太阳辐射及降水,气温和太阳辐射的影响具有连续性,降水则导致地温骤减,风速仅在夏季影响地温。  相似文献   

16.
利用乌鲁木齐市5座100 m气象塔10层气温观测资料,通过统计方法详细分析了乌鲁木齐市城区和郊区近地层不同高度气温季节变化和日变化特征。研究表明:乌鲁木齐市四季均存在逆温,北郊逆温最明显。近地层100 m内主城区气温日较差较小,约为3.5~5.5 ℃;郊区气温日较差较大,约为4.2~7.0 ℃。夏季郊区气温高于城区,冬季北郊气温最低、南郊最高;白天大气基本上为超绝热不稳定状态,夜间城区气温高于郊区。春、秋季,白天城区和郊区温差小、夜间大,且愈近地面温差愈大;春季城区与南郊温差可达2.4 ℃、秋季可达3 ℃。城区和郊区各季节各层最高气温与最低气温出现时间几乎不同步达到。夏季、秋季、冬季和春季最高气温分别约在17:00~18:10、16:00~17:20、14:30~15:50(北郊滞后1.5 h)、17:00~18:00(南郊提前1.5 h)出现,最低气温分别约在7:10~8:20、8:00~9:00、冬季为多个时段(这与出现逆温有关)、7:30~8:40出现。  相似文献   

17.
基于MODIS数据和气象观测数据的气温空间插值方法比较   总被引:2,自引:0,他引:2  
本文以福建省福州市为研究区域,利用MODIS影像数据反演福州市地表温度;同时利用相同时间的福州市及其周边的32个气象站日平均气温数据,结合数字高程模型(DEM)中提取出的地形因子,研究温度与经度、纬度、海拔高度等的相关关系,提出了福州市地形因子与气温相关模型,利用该模型插值得到福州市的地表温度;再利用气温垂直递减规律进行插值得到地表温度。对比3种结果可知,对于气象数据容易获得,气象站点较多且均匀分布在研究区时,利用气象数据插值地表温度较快,但计算结果比实际值略高;对于气象数据不易获得或站点较少时,可以用影像数据来反演地表温度,其精度受提取参数的精度的制约,在参数使用正确情况下比插值方法反演精度高。  相似文献   

18.
秦岭南北1951-2009年的气温与热量资源变化   总被引:10,自引:4,他引:6  
周旗  卞娟娟  郑景云 《地理学报》2011,66(9):1211-1218
根据47 个地面气象站1951-2009 年日气温资料,对秦岭南北近60 年温度带划分指标(包括年平均气温、日平均气温稳定≥ 10 ℃的日数与积温、最冷月与最热月气温、极端最低气温等) 的变化特征进行了分析,结果发现:秦岭南北气候增暖主要出现在20 世纪90 年代初之后,年平均气温、日平均气温≥ 10 ℃的日数和积温的变化趋势基本一致,1951-1993 年在年代波动中略有下降,而1993 年之后则快速上升;但存在着季节和区域差异。在季节上,冷季(1 月) 平均气温与极端最低气温变化趋势一致,1951-1985 年均在波动中略有上升,1985 年之后出现微弱下降;而暖季(7 月) 温度总体变化趋势不明显。在区域上,1993 年之后,秦岭以北、秦岭南坡、汉水流域及巴巫谷地的日平均气温稳定≥ 10 ℃的日数分别较1993 年之前增加了10 天、10 天、8 天和5 天,相应时段的积温分别增加了278 ℃、251 ℃、235 ℃和207 ℃;即20 世纪90 年代初以来,秦岭以北气温与热量资源增加幅度要比秦岭以南稍大一些。  相似文献   

19.
1IntroductionThepurposeofthisstudyis,byinverselydeducingsedimentaryenvironmentfromsedimentaryresult,torecovertherecordofrecen...  相似文献   

20.
水中可溶性离子的含量及各离子的比例关系是衡量水质的重要指标,但常用的方法不能同时反映这两种关系。Maucha图既可以反映8种主要阴、阳离子的总浓度,同时也可以指示各离子的相对浓度,兼顾了离子的绝对含量和相对含量,具有较强的实用性。但由于缺乏绘制Maucha图的专业软件,导致Maucha图在实际应用中受到很大限制。通过介绍Maucha图的演化过程,绘制Maucha图时建立坐标系及确定Maucha图各组成部分坐标值的方法,并阐述了基于Matlab语言实现Maucha图计算机输出的编程流程。最后以内蒙古浑善达克沙地东部地区为例,说明了Maucha图在天然水体水化学分析中的应用。该应用表明,Maucha图在反映样品矿化度、指示各离子的相对浓度和绝对浓度、判断水体水化学类型及水化学数据空间分析等方面均具有较强的优势,能显著提高水化学数据的可视化表达能力,丰富水化学图在水文地质中的应用,并为水化学数据更深层次的分析提供参考依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号