首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   1篇
地球物理   1篇
自然地理   6篇
  2015年   1篇
  2014年   2篇
  2013年   3篇
  2010年   1篇
排序方式: 共有7条查询结果,搜索用时 359 毫秒
1
1.
广泛分布于喜马拉雅山脉和我国华南地区的西藏红豆杉频临灭绝,揭示空间遗传结构和物种分布变化对于理解西藏红豆杉的进化过程及其物种保护尤为重要。基于西藏红豆杉48个种群的分子变异数据,利用反距离权重空间差值方法得到遗传多样性和遗传分化分布图,识别出6个遗传多样性和5个遗传分化高值区域,这些重点区域主要位于我国南方的几个山区,这些区域在未来应给予重点保护;基于Monmonier算法识别出4条地理隔离:东喜马拉雅山脉、横断山脉、云南高原和台湾海峡;利用生态位模型模拟三个历史时期的物种分布格局,从末次间冰期至末次冰盛期,物种经历一次向高原西部的面积扩张,这与典型的冰期物种退缩模式不同;末次冰盛期之后,物种面积逐渐缩小,呈现破碎化分布。因此,地理景观特征和第四纪气候波动对西藏红豆杉遗传结构和分布格局影响很大。  相似文献   
2.
1971-2009 年珠穆朗玛峰地区尼泊尔境内气候变化   总被引:3,自引:0,他引:3  
利用珠穆朗玛峰南坡尼泊尔境内(科西河流域) 的10 个气象站1971-2009 年月平均气温、月平均最高、最低气温和逐月降水资料, 采用线性趋势、Sen 斜率估计、Mann-Kendall 等方法分析区域气候变化状况及其时空特征, 并与珠穆朗玛峰北坡地区气候进行比较, 分析了珠穆朗玛峰地区气候变化的特征与趋势。结果表明:(1) 1971-2009 年间, 珠穆朗玛峰南坡年平均气温为20.0℃, 线性升温率为0.25℃/10a, 与北坡主要受年平均最低气温影响相反, 增幅主要受年平均最高气温升高的影响, 并且在1974 年及1992 年间出现两次显著增温, 增温特别明显的月份为2 月和9 月;(2) 该地区降水变化的局地性较强, 近40 年间年平均降水量为1729.01 mm, 年平均降水量以每年约4.27 mm的线性增幅有所增加, 但并不显著, 且降水月变化和季变化特征均不明显;(3) 由于珠穆朗玛峰南坡受到季风带来暖湿气流和喜马拉雅山阻挡的双重影响, 珠峰南坡的年平均降水量远高于北坡;(4) 珠穆朗玛峰南坡气温变暖的海拔依赖性并不明显, 且南坡地区的变暖趋势并没有北坡变暖趋势明显。  相似文献   
3.
青藏高原高寒草地净初级生产力(NPP)时空分异   总被引:13,自引:2,他引:11  
基于1982-2009 年间的遥感数据和野外台站生态实测数据,利用遥感生产力模型(CASA模型) 估算青藏高原高寒草地植被净初级生产力(NPP),分别从地带属性(自然地带、海拔高程、经纬度)、流域、行政区域(县级) 等方面对其时空变化过程进行分析,阐述了1982 年以来青藏高原高寒草地植被NPP的时空格局与变化特征。结果表明:① 青藏高原高寒草地NPP多年均值的空间分布表现为由东南向西北逐渐递减;1982-2009 年间,青藏高原高寒草地的年均总NPP为177.2×1012 gC·yr-1,单位面积年均植被NPP为120.8 gC·m-2yr-1;② 研究时段内,青藏高原高寒草地年均NPP 在112.6~129.9 gC·m-2yr-1 间,呈波动上升的趋势,增幅为13.3%;NPP 增加的草地占草地总面积的32.56%、减少的占5.55%;③ 青藏高原多数自然地带内的NPP呈增加趋势,仅阿里山地半荒漠、荒漠地带NPP呈轻微减低趋势,其中高寒灌丛草甸地带和草原地带的NPP增长幅度明显大于高寒荒漠地带;年均NPP增加面积比随着海拔升高呈现"升高—稳定—降低"的特点,而降低面积比则呈现"降低—稳定—升高"的特征;④ 各主要流域草地年均植被NPP均呈现增长趋势,其中黄河流域增长趋势显著且增幅最大。植被NPP和盖度及生长季时空变化显示,青藏高原高寒草地生态系统健康状况总体改善局部恶化。  相似文献   
4.
In this study,we have used four methods to investigate the start of the growing season(SGS) on the Tibetan Plateau(TP) from 1982 to 2012,using Normalized Difference Vegetation Index(NDVI) data obtained from Global Inventory Modeling and Mapping Studies(GIMSS,1982-2006) and SPOT VEGETATION(SPOT-VGT,1999-2012).SGS values estimated using the four methods show similar spatial patterns along latitudinal or altitudinal gradients,but with significant variations in the SGS dates.The largest discrepancies are mainly found in the regions with the highest or the lowest vegetation coverage.Between 1982 and 1998,the SGS values derived from the four methods all display an advancing trend,however,according to the more recent SPOT VGT data(1999-2012),there is no continuously advancing trend of SGS on the TP.Analysis of the correlation between the SGS values derived from GIMMS and SPOT between 1999 and 2006 demonstrates consistency in the tendency with regard both to the data sources and to the four analysis methods used.Compared with other methods,the greatest consistency between the in situ data and the SGS values retrieved is obtained with Method 3(Threshold of NDVI ratio).To avoid error,in a vast region with diverse vegetation types and physical environments,it is critical to know the seasonal change characteristics of the different vegetation types,particularly in areas with sparse grassland or evergreen forest.  相似文献   
5.
Based on monthly mean, maximum, and minimum air temperature and monthly mean precipitation data from 10 meteorological stations on the southern slope of the Mt. Qomolangma region in Nepal between 1971 and 2009, the spatial and temporal characteristics of climatic change in this region were analyzed using climatic linear trend, Sen's Slope Estimates and Mann-Kendall Test analysis methods. This paper focuses only on the southern slope and attempts to compare the results with those from the northern slope to clarify the characteristics and trends of climatic change in the Mt. Qomolangma region. The results showed that: (1) between 1971 and 2009, the annual mean temperature in the study area was 20.0℃, the rising rate of annual mean temperature was 0.25℃/10a, and the temperature increases were highly influenced by the maximum temperature in this region. On the other hand, the temperature increases on the northern slope of Mt. Qomolangma region were highly influenced by the minimum temperature. In 1974 and 1992, the temperature rose noticeably in February and September in the southern region when the increment passed 0.9℃. (2) Precipitation had an asymmetric distribution; between 1971 and 2009, the annual precipitation was 1729.01 mm. In this region, precipitation showed an increasing trend of 4.27 mm/a, but this was not statistically significant. In addition, the increase in rainfall was mainly concentrated in the period from April to October, including the entire monsoon period (from June to September) when precipitation accounts for about 78.9% of the annual total. (3) The influence of altitude on climate warming was not clear in the southern region, whereas the trend of climate warming was obvious on the northern slope of Mt. Qomolangma. The annual mean precipitation in the southern region was much higher than that of the northern slope of the Mt. Qomolangma region. This shows the barrier effect of the Himalayas as a whole and Mt. Qomolangma in particular.  相似文献   
6.
Based on the GIMMS AVHRR NDVI data(8 km spatial resolution) for 1982–2000, the SPOT VEGETATION NDVI data(1 km spatial resolution) for 1998–2009, and observational plant biomass data, the CASA model was used to model changes in alpine grassland net primary production(NPP) on the Tibetan Plateau(TP). This study will help to evaluate the health conditions of the alpine grassland ecosystem, and is of great importance to the promotion of sustainable development of plateau pasture and to the understanding of the function of the national ecological security shelter on the TP. The spatio-temporal characteristics of NPP change were investigated using spatial statistical analysis, separately on the basis of physico-geographical factors(natural zone, altitude, latitude and longitude), river basin, and county-level administrative area. Data processing was carried out using an ENVI 4.8 platform, while an ArcGIS 9.3 and ANUSPLIN platform was used to conduct the spatial analysis and mapping. The primary results are as follows:(1) The NPP of alpine grassland on the TP gradually decreases from the southeast to the northwest, which corresponds to gradients in precipitation and temperature. From 1982 to 2009, the average annual total NPP in the TP alpine grassland was 177.2×1012gC yr-1(yr represents year), while the average annual NPP was 120.8 gC m-2yr-1.(2) The annual NPP in alpine grassland on the TP fluctuates from year to year but shows an overall positive trend ranging from 114.7 gC m-2yr-1in 1982 to 129.9 gC m-2yr-1in 2009, with an overall increase of 13.3%; 32.56% of the total alpine grassland on the TP showed a significant increase in NPP, while only 5.55% showed a significant decrease over this 28-year period.(3) Spatio-temporal characteristics are an important control on annual NPP in alpine grassland: a) NPP increased in most of the natural zones on the TP, only showing a slight decrease in the Ngari montane desert-steppe and desert zone. The positive trend in NPP in the high-cold shrub-meadow zone, high-cold meadow steppe zone and high-cold steppe zone is more significant than that of the high-cold desert zone; b) with increasing altitude, the percentage area with a positive trend in annual NPP follows a trend of"increasing-stable-decreasing", while the percentage area with a negative trend in annual NPP follows a trend of "decreasing-stable-increasing", with increasing altitude; c) the variation in annual NPP with latitude and longitude co-varies with the vegetation distribution; d) the variation in annual NPP within the major river basins has a generally positive trend, of which the growth in NPP in the Yellow River Basin is most significant. Results show that, based on changes in NPP trends, vegetation coverage and phonological phenomenon with time, NPP has been declining in certain places successively, while the overall health of the alpine grassland on the TP is improving.  相似文献   
7.
杨树防护林带三维结构模型及其参数求解   总被引:2,自引:0,他引:2       下载免费PDF全文
表面积密度和体积密度的空间函数是表征防护林带三维空气动力学结构的两个重要指标, 依据这两个函数方可构建林带三维空气动力学结构模型. 然而, 中国对于防护林带三维结构模型中的树体表面积、体积以及二者在林带空间的分布函数一直没有科学地定义, 无法准确反映林带的立体结构对空气动力学效应的影响, 成为该研究领域的难点和前沿问题. 本文以中国北方地区杨树为主要造林树种所营建的防护林带为研究对象, 基于杨树树体结构和林带结构配置模式, 通过多个典型样带调查和不同径级的标准木树干解析实测数据分析, 建立了杨树总表面积/总体积函数、树体不同组分(干、枝和叶)表面积/体积函数以及两者在林带空间上的分布函数等子模型, 并求解得到了每个模型所需参数, 从而得到适用于描述中国北方典型杨树农田防护林带三维结构的空气动力学模型. 结果表明: 杨树防护林带的表面积密度为0.215~10.131 m2/m3, 体积密度为0.00007~0.04667 m3/m3, 二者在林带冠层内的空间变化较大, 且其分布是不均匀的. 可见, 在林带边界层的大气模拟研究中, 以往对林带结构三维分布视为均匀的假设不够客观, 与实际情况有较大误差. 本文所得到的模型不但可较为准确地检验干、枝和叶等不同组分对大气边界层流场的影响, 而且可揭示林带整体空气动力学特征, 同时可表达与杨树林带结构相似的其他树种组成的林带的三维结构, 客观地阐明林带的空气动力学机理, 从而提高林带作用下的边界层流数值模拟的精度, 为合理地调控防护林带结构、充分发挥其防护功能提供依据.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号