首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Based on the drought/flood grades of 90 meterological stations over eastern China and summer average sea-level pressure (SLP) during 1850–2008 and BPCCA statistical methods, the coupling relationship between the drought/flood grades and the East Asian summer SLP is analyzed. The East Asian summer monsoon index which is closely related with interdecadal variation of drought/flood distribution over eastern China is defined by using the key areas of SLP. The impact of the interdecadal variation of the East Asian summer monsoon on the distribution of drought/flood over eastern China in the last 159 years is researched. The results show that there are four typical drought and flood spatial distribution patterns in eastern China, i.e. the distribution of drought/flood in southern China is contrary to the other regions, the distribution of drought/flood along the Huanghe River–Huaihe River Valley is contrary to the Yangtze River Valley and regions south of it, the distribution of drought/flood along the Yangtze River Valley and Huaihe River Valley is contrary to the other regions, the distribution of drought/flood in eastern China is contrary to the western. The main distribution pattern of SLP in summer is that the strength of SLP is opposite in Asian continent and West Pacific. It has close relationship between the interdecadal variation of drought/flood distribution patterns over eastern China and the interdecadal variation of the East Asian summer monsoon which was defined in this paper, but the correlation is not stable and it has a significant difference in changes of interdecadal phase. When the East Asian summer monsoon was stronger (weaker), regions north of the Yangtze River Valley was more susceptible to drought (flood), the Yangtze River Valley and regions south of it were more susceptible to flood (drought) before the 1920s; when the East Asian summer monsoon was stronger (weaker), the regions north of the Yangtze River Valley was prone to flood (drought), the Yangtze River Valley and regions south of it were prone to drought (flood) after the 1920s. It is indicated that by using the data of the longer period could get much richer results than by using the data of the last 50–60 years. The differences in the interdecadal phase between the East Asian summer monsoon and the drought/flood distributions in eastern China may be associated with the nonlinear feedback, which is the East Asian summer monsoon for the extrinsic forcing of solar activity.  相似文献   

2.
According to the textual research into the historical documents dominated by archives yearly, as well as the verification with several other kinds of data, the later or earlier starting time of the rainy seasons in Yunnan during 1711-1982 has been reconstructed. The analysis indicates that there are obvious fluctuations in the starting date of the rainy seasons in Yunnan in a year or years, and long fluctuation on the decadal scale. The rainy season comes earlier in the early 18th century, later in the 19th century and earlier again in the 20th century. This reflects to a certain degree the gradual change of the summer monsoon in Yunnan. There exists an obvious quasi-3 years cycle, which is related to EI-Nino's quasi-3 years cycle, and a 11.3-year cycle which is notably related to the 11-year cycle of the solar activity of starting date of the rainy seasons in Yunnan. Meanwhile, the dissertation finds that the EI-Nino is very important to the starting date of the rainy seasons in Yunnan. The starting date of the rainy seasons in Yunnan often comes later or normally in the year of EI-Nino. However, there is an obvious imperfect period in such influence, which in turn may mean that there is a certain fluctuation in the effect of ENSO on Asian summer monsoon.  相似文献   

3.
三江源地区1961-2010年降水时空变化(英文)   总被引:2,自引:0,他引:2  
Based on a monthly dataset of precipitation time series (1961-2010) from 12 meteorological stations across the Three-River Headwater Region (THRHR) of Qinghai Province, China, the spatio-temporal variation and abrupt change analysis of precipitation were examined by using moving average, linear regression, spline interpolation, the Mann-Kendall test and so on. Major conclusions were as follows. (1) The long-term annual and seasonal precipitation in the study area indicated an increasing trend with some oscillations during 1961-2010; however, the summer precipitation in the Lantsang (Lancang) River Headwater Region (LARHR), and the autumn precipitation in the Yangtze River Headwater Region (YERHR) of the THRHR decreased in the same period. (2) The amount of annual precipitation in the THRHR and its three sub-headwater regions was greater in the 1980s and 2000s. The springs were fairly wet after the 1970s, while the summers were relatively wet in the 1960s, 1980s and 2000s. In addition, the amount of precipitation in the autumn was greater in the 1970s and 1980s, but it was relatively less for the winter precipitation, except in the 1990s. (3) The normal values of spring, summer, winter and annual precipitation in the THRHR and its three sub-headwater regions all increased, but the normal value of summer precipitation in the LARHR had a negative trend and the normal value of winter precipitation declined in general. (4) The spring and winter precipitation increased in most of the THRHR. The summer, autumn and annual precipitation increased mainly in the marginal area of the west and north and decreased in the regions of Yushu, Zaduo, Jiuzhi and Banma. (5) The spring and winter precipitation in the THRHR and its three sub-headwater regions showed an abrupt change, except for the spring precipitation in the YARHR. The abrupt changes of spring precipitation were mainly in the late 1980s and early 1990s, while the abrupt changes of winter precipitation were primary in the mid-to late 1970s. This research would be helpful for further understanding the trends and periodicity of precipitation and for watershed-based water resource management in the THRHR.  相似文献   

4.
Understanding the past variations in extreme drought is especially beneficial to the improvement of drought resistance planning and drought risk management in China. Based on the monitoring data of meteorological stations from 1961 to 2015 and a meteorological drought index, the Standardized Precipitation Evapotranspiration Index(SPEI), the spatio-temporal variations in extreme drought at inter-decadal, inter-annual and seasonal scales in China were analyzed. The results revealed that 12 months cumulative precipitation with 1/2 to 5/8 of average annual precipitation will trigger extreme drought. From the period 1961–1987 to the period 1988–2015, the mean annual frequency of extreme drought(FED) increased along a strip extending from southwest China(SWC) to the western part of northeast China(NEC). The increased FED showed the highest value in spring, followed by winter, autumn and summer. There was a continuous increase in the decadal-FED from the 1990 s to the 2010 s on the Tibetan Plateau(TP), the southeast China(SEC) and the SW. During the period 1961–2015, the number of continuous drought stations was almost the same among 4 to 6 months and among 10 to 12 months of continuous drought, respectively. It can be inferred that drought lasting 6 or 12 months may lead to more severe drought disasters due to longer duration. The range of the longest continuous drought occurred in the 21 st century had widely increased compared with that in the 1980 s and the 1990 s. Our findings may be helpful for water resources management and reducing the risk of drought disasters in China.  相似文献   

5.
中国近代北方极端干湿事件的演变规律   总被引:2,自引:0,他引:2  
Using monthly precipitation and monthly mean temperature, a surface humid index was proposed. According to the index, the distributed characteristics of extreme dryness has been fully analyzed. The results indicated that there is an obvious increasing trend of extreme dryness in the central part of northern China and northeastern China in the last 10 years, which shows a high frequency period of extreme dryness; while a low frequency period in the regions during the last 100 years. Compared with variation trend of the temperature in these regions, the region of high frequent extreme dryness is consistent with the warming trend in the same region.  相似文献   

6.
Using daily temperature data from 599 Chinese weather stations during 1961–2007, the length change trends of four seasons during the past 47 years were analyzed. Results show that throughout the region, four seasons’ lengths are: spring becomes shorter (-0.8 d/10yrs), summer becomes longer (3.2 d/10yrs), autumn (-0.5 d/10yrs) and winter (-1.6 d/10yrs) becomes shorter. This trend is different in spatial distribution, namely it is very obvious in northern than southern China, and also remarkable in eastern than western China. Summer change is most obvious, but autumn has little change comparatively. This trend is highly obvious in North, East, Central and South China. In the Southwest starting in the 21st century, summer becomes longer and winter shortens. The trend in the Plateau region since the 1980s is that spring becomes longer and winter shortens. The average annual temperature increased during the past 47 years, and the change of the average annual temperature precedes seasons’ length. Thus, the average annual temperature has a certain influence on the length change of seasons.  相似文献   

7.
Having analyzed the tree ring width and maximum latewood density of Pinus densata from west Sichuan, we obtained different climate information from tree-ring width and maximum latewood density chronology. The growth of tree ring width was responded princi- pally to the precipitation in current May, which might be influenced by the activity of southwest monsoon, whereas the maximum latewood density reflected summer temperature (June-September). According to the correlation relationship, a transfer function had been used to reconstruct summer temperature for the study area. The explained variance of reconstruction is 51% (F=52.099, p〈0.0001). In the reconstruction series: before the 1930s, the climate was relatively cold, and relatively warm from 1930 to 1960, this trend was in accordance with the cold-warm period of the last 100 years, west Sichuan. Compared with Chengdu, the warming break point in west Sichuan is 3 years ahead of time, indicating that the Tibetan Plateau was more sensitive to temperature change. There was an evident summer warming signal after 1983. Although the last 100-year running average of summer temperature in the 1990s was the maximum, the running average of the early 1990s was below the average line and it was cold summer, but summer drought occurred in the late 1990s.  相似文献   

8.
Modern climate research has shown that the Asian summer monsoon water vapor transport is limited to the eastern part of the Qilian Mountains. On the Holocene millennial-scale, whether the northwest boundary of the summer monsoon varies according to climate change is a key scientific issue. Yanchi Lake is located in the northern Qilian Mountains and the middle of the Hexi Corridor, where the modern climate is less affected by the Asian summer monsoon. It is a key research area for examining the long-term variations of the Asian summer monsoon. Paleoclimatic data, including AMS ^14C dates of pollen concentrates and bulk organic carbon, lithology, grain-size, mineral composition and geochemical proxies were acquired from sediments of Yanchi Lake. The chronological results show that the lower part of the lacustrine section is formed mainly in the Late Glacial and early Holocene period, while the proxies' data indicate the lake expansion is associated with high content of mineral salts. The middle part of this section is formed during the transitional period of the early and middle Holocene. Affected by the reworking effect, the pollen concentrates AMS^14C dates from the middle part of the section are generally older than those from the lower part. Since the mid-Holocene, Yanchi Lake retreated significantly and the deposition rate dropped obvi- ously. The Yanchi Lake record is consistent with the Late Glacial and Holocene lake records in the Qinghai-Tibet Plateau and the climatic records in typical monsoon domain, which indicate the lake expansion and the strong Asian summer monsoon during the Late Glacial and early Holocene. The long-term monsoonal pattern is different from the lake evolution in Central Asia on the Holocene millennial-scale. This study proves the monsoon impacts on the northwestern margin of the summer monsoon, and also proves the fact that the northern boundary of the summer monsoon moves according to millennial-scale climate change.  相似文献   

9.
Geochemical and grain size analysis on the DQ (Dongqi) profile from Gonghe Basin, northeastern Qinghai-Tibetan Plateau, indicates that regional climate has experienced several cold-dry and warm-wet cycles since the last glacial maximum (LGM). The cold and dry climate dominated the region before 15.82 cal. ka B.P. due to stronger winter monsoon and weaker summer monsoon, but the climate was relatively cold and wetter prior to 21 cal. ka B.P.. In 15.82–9.5 cal. ka B.P., summer monsoon strength increased and winter monsoon tended to be weaker, implying an obvious warm climate. Specifically, the relatively cold and dry condition appeared in 14.7–13.7 cal. ka B.P. and 12.1–9.5 cal. ka B.P., respectively, while relatively warm and wet in 13.7–12.1 cal. ka B.P.. The winter and summer monsoonal strength presents frequent fluctuations in the Holocene and relatively warm and wet conditions emerged in 9.5–7.0 cal. ka B.P. due to stronger summer monsoon. From 7.0 to 5.1 cal. ka B.P., the cycle of cold-dry and warm-wet climate corresponds to frequent fluctuations of winter and summer monsoons. The climate becomes warm and wet in 5.1–2.7 cal. ka B.P., accompanying increased summer monsoon, but it tends to be cold and dry since 2.7 cal. ka B.P. due to enhanced winter monsoonal strength. In addition, the evolution of regional winter and summer monsoons is coincident with warm and cold records from the polar ice core. In other words, climatic change in the Gonghe Basin can be considered as a regional response to global climate change.  相似文献   

10.
西南地区冬季气温和降水的时空变化   总被引:2,自引:0,他引:2  
In recent years,the socio-economic impacts of winter extreme climate events have underscored the importance of winter climate anomalies in Southwest China (SWC).The spatio-temporal variability of surface air temperature (SAT) and precipitation in SWC and their possible causes have been investigated in this paper based on observational data from 1961 to 2010.The results indicate that SAT anomalies in SWC have two dominate modes,one is homogenous,and the other a zonal dipole.The former is caused by the anomalies of East Asian winter monsoon;the latter arises from the anomalies of both subtropical west Pacific high and regional cold air in lower troposphere.The most dominant mode of precipitation anomalies in SWC is homogenous and it has a high correlation with northern hemisphere annular mode (NAM,AO).Neither NAM nor ENSO has significant impacts on SAT in SWC.The anomalies of NAM are associated with the anomalies of tropical circulations,and there-fore precipitation over the SWC.When NAM is in positive (negative) phase,the winter pre-cipitation is more (less) than normal in SWC.Winter precipitation increase over the whole SWC is associated with the El Nino.However,during La Nina winter,the pattern is not uni-form.There is an increase in precipitation over the central parts and a decrease in western and eastern parts of SWC.The severe drought in SWC in winter 2010 is more likely caused by anomalies of NAM,not El Nino.  相似文献   

11.
近50 年西南地区极端干旱气候变化特征   总被引:45,自引:1,他引:44  
利用中国气象局整编的1960-2009 年西南地区108 站逐日气温、降水等资料,计算年、月地表湿润指数,并进行标准化,统计极端干旱发生频率,对年际、年代际、季风期和非季风期的极端干旱变化特征进行分析,得出结论:(1) 整体上,四川盆地西南部、横断山区南端、广西南部沿海和贵州北部是近50 年来年极端干旱发生频率明显增加的地区;年代际变化上,20 世纪60-80 年代极端干旱呈逐渐减少趋势,高发区交替出现在东南-西北-东,90 年代下降明显,整个地区都转湿,进入21 世纪后,极端干旱距平呈现正距平,且增幅较大,区域间差异却显著减小。(2) 季风期与非季风期的极端干旱变化有很大差异,季风期极端干旱频率在不断增加,多发生在四川盆地周边海拔较高的山区、广西大部和“帚形山脉”地带,海拔对季风期极端干旱发生频率有一定影响;非季风期缓慢下降,整体偏湿。(3) 通过滑动t 检验和小波分析发现,季风期西南极端干旱在2003 年发生突变,非季风期在1989 年突变,年极端干旱发生频率是季风期和非季风期的突变叠加的结果;年极端干旱存在准5年和准12 年的周期变化。  相似文献   

12.
对青藏高原东北部共和盆地冬其剖面的化学元素与粒度分析表明,末次盛冰期以来区域冬夏季风总体上呈现此消彼长的关系,气候出现多次冷干-暖湿旋回。15.82 ka BP之前冬季风最强,夏季风最弱,为末次盛冰期时的冷干气候,但21 ka BP之前气候可能寒冷偏湿。15.82~9.5 ka BP夏季风明显增强,冬季风衰弱,气候明显转暖,其中老仙女木时期(14.7~13.7 a BP)和新仙女木时期(12.1~9.5 ka BP)气候相对冷干,而B-A时期(13.7~12.1 ka BP)气候相对暖湿。全新世以来冬夏季风出现多次波动,9.5~7.0 ka BP夏季风相对较强,气候相对暖湿;7.0~5.1 ka BP冬夏季风强弱交替频繁,气候出现冷干-暖湿旋回;5.1~2.7 ka BP夏季风总体较强,气候温暖湿润;2.7 ka BP 之后冬季风明显增强,气候趋于冷干。此外,区域冬夏季风演变过程与极地冰芯记录的冷暖事件大体一致,可以认为共和盆地气候变化是全球气候变化的区域响应。  相似文献   

13.
西北地区5—9月极端干期长度异常的气候特征   总被引:3,自引:1,他引:2  
王劲松  魏锋 《中国沙漠》2007,27(3):514-519
利用西北地区107个测站1960—2004年逐日降水资料,统计5—9月连续无雨日数 (日降水量小于0.1 mm),得到西北地区5—9月的逐年极端干期长度,在此基础上分析了极端干期长度的基本时空分布特征;对资料标准化后进行经验正交展开(EOF)和旋转经验正交展开(REOF),研究其异常的空间结构及时间演变规律;并利用小波分析方法,分析了极端干期的周期性及突变的时间。结果表明:西北地区极端干期长度的气候平均分布与海拔高度及地理位置有较大的关系。西北地区极端干期长度异常在空间上主要表现为整体一致型,其次表现为东西相反的变化趋势。旋转载荷向量场(RLV)反映出极端干期长度的5个异常气候区:高原东北区,南疆区,青海区,北疆区和西北东南区。5个异常区极端干期长度均存在较明显的2~3 a高频振荡;其次西北东南区存在明显的16 a低频变化周期,而其他各区存在明显的8~11 a低频变化周期。新疆及青藏高原20世纪80年代后极端干期有缩短之趋势。高原东北区,青海区,北疆区的极端干期长度的分布有两个突变点;南疆区、西北东南区则各有一突变点。  相似文献   

14.
李小亚  张勃 《中国沙漠》2013,33(6):1884-1890
选取甘肃河东地区13个气象站点1960—2011年的日降水资料,运用气候线性趋势、Mann-Kendall检验、Morlet小波分析、反距离加权法和R/S方法,分析了甘肃河东地区极端降水的时空分布,并预测了未来变化趋势。结果表明:(1)河东地区近52年持续干旱日数呈显著增加趋势,而其余极端降水指标呈减少趋势,其中只有中雨日数通过了显著性检验;各极端降水指标在河东季风区和河东高寒区存在明显差异;在河东季风区,中雨日数、R95极端降水量和降水强度显著减少,而持续干旱日数显著增加;在河东高寒区持续降水日数显著减少。(2)空间分布上,除持续干旱日数大多数区域增加外,其余极端降水指标大部分区域减少,减少区域集中在河东中部和河东东南部。(3)极端降水指标主要以20年和5~8年的周期为主,在不同的时间序列信号强弱不同\.(4)中雨日数、持续干旱日数、R95极端降水量、降水强度在20世纪70年代发生趋势性突变,持续降水日数和最大5天降水量在80年代转折性突变。(5)除中雨日数、持续降水日数在河东高寒区未来发展不稳定外,其它各指标在各区域未来表现出持续性,与过去变化趋势一致。  相似文献   

15.
气候波动对莱州湾地区水资源及极端旱涝事件的影响   总被引:13,自引:4,他引:9  
通过对莱州湾地区1960~1993年气候波动水资源及极端旱涝事件的影响分析,楞以看出该地区水资源对气候波动敏感。当降水增加10%,全区水资源总量可增加22%;若降水减少10%,全区水资源总量则减少23%。在气候处于少雨时期,极端干旱频高远高于多雨时期。同时还分析了未来气候变化对莱州湾地区水资源的可能影响。  相似文献   

16.
1960-2010 年中国天山山区气候变化区域差异及突变特征   总被引:5,自引:0,他引:5  
张正勇  刘琳  唐湘玲 《地理科学进展》2012,31(11):1475-1484
利用天山山区32 个气象站点1960-2010 年的逐月平均气温、降水数据和DEM数据等,进行了气候时空变化趋势和突变分析,研究结果表明:山区近50 年来年均气温呈明显的上升趋势,21 世纪以来年均温增加最明显,季节均温与年均温的变化趋势基本一致,冬季均温增加最明显,夏季均温变化最小;山区东段升温趋势最明显,北坡的变化趋势明显于南坡.自20 世纪60 年代以来降水量持续递增,其中80 年代开始更加明显;夏季降水量增加最明显,春季变化最小,山区年降水主要集中在春夏两季;山区气候空间分布呈现“两中心”的特征,东段为“干热”中心,西北部为“暖湿”中心,这两个中心的气候反差有扩大的趋势;山区气温和降水突变不太明显,春夏季气温突变可能发生在20 个世纪90 年代末至21 世纪初;秋冬季气温突变在20 世纪90 年代可能发生过;南坡和东段年均温突变可能发生在1982 年,北坡大致发生在1990 年左右.秋季降水突变发生在20 世纪80 年代末,其他季节不明显,年降水突变发生在80年代末期.  相似文献   

17.
基于日SPEI的近55 a西南地区极端干旱事件时空演变特征   总被引:4,自引:0,他引:4  
贾艳青  张勃 《地理科学》2018,38(3):474-483
利用1960~2014年中国西南地区141个气象台站的逐日气象资料,引入一个新的干旱指数——逐日标准化降水蒸散指数(日SPEI),对极端干旱事件的年代际、年际、季节内变化及持续性特征进行了分析,结果表明:空间上,近55 a西南春季和年极端干旱程度呈一致的减弱趋势,重庆、四川与贵州的交界处及四川西北部极端干旱程度明显缓解,而夏、秋两季极端干旱表现出增强的趋势并有一定的区域性特征。时间上,春季和全年极端干旱频率、强度和持续天数逐渐减少,春季极端干旱的减弱程度较全年明显;夏、秋两季极端干旱频率、强度和持续天数呈增加趋势,夏季极端干旱的加重趋势比秋季明显。从极端干旱事件的持续性来看,20世纪60年代和21世纪初(2000~2014年)西南遭受的极端干旱最严重,持续期达60 d以上的站点分别占到站点总数的60%和73%。  相似文献   

18.
近159 年东亚夏季风年代际变化与中国东部旱涝分布   总被引:5,自引:0,他引:5  
利用1850-2008 年我国东部地区90 个测站的旱涝等级和北半球夏季海平面气压格点等资料,使用BP 典型相关等方法,分析了近159 年旱涝等级与东亚夏季海平面气压的耦合相关关系。利用关键区域的海平面气压资料,定义出与我国东部旱涝分布有密切联系的东亚夏季风指数,在此基础上分析了东亚夏季风年代际变化对我国东部旱涝分布的影响。结果表明:(1) 近159 年中国东部旱涝具有4 种典型空间分布型,即华南与中国东部其他地区旱涝趋势相反型、黄淮地区与长江流域及其以南旱涝趋势相反型、江淮流域与中国东部其他地区旱涝趋势相反型和中国东部与西部旱涝趋势相反型。近159 年东亚夏季海平面气压场主要呈现亚洲大陆与西太平洋海平面气压强弱相反的分布特征;(2) 本文定义的夏季风指数的年代际变化与我国东部旱涝典型分布型的年代际变化有密切关系,但两者的相关关系并不是稳定不变的,存在显著的年代际位相差异,即20 世纪20 年代之前,当东亚夏季风偏强(弱) 时,长江流域以北容易偏旱(偏涝),长江流域及其以南容易偏涝(偏旱),20 世纪20 年代以后,当东亚夏季风偏强(弱) 时,长江流域以北容易偏涝(偏旱),长江流域及其以南容易偏旱(偏涝)。可见,使用较长年代资料进行考察,研究结论丰富了大多数使用近50-60 年资料的研究结果。东亚夏季风与我国东部旱涝分布之间关系的年代际位相差异,可能与东亚夏季风对太阳活动等外强迫的非线性反馈相联系  相似文献   

19.
乌鲁木齐河流域气候变化的区域差异特征及突变分析   总被引:5,自引:2,他引:3  
利用乌鲁木齐河流域气象站的气温和降水资料,运用一元回归分析法和5年趋势滑动,进行了气候变化的趋势分析。结果表明:乌鲁木齐河流域的年平均气温在20世纪60-80年代偏低,90年代以后偏高,即80年代前呈下降趋势,90年代后呈上升趋势,并且秋、冬季升温幅度较大;60年代降水量最少,之后逐渐增多,2000年以来迅速增多;气温变化在空间上表现出上游气温低于下游,秋、冬季气候变暖明显早于春、夏季;降水变化的空间差异也明显。在此基础上,利用滑动T检验法、YAMAMOTO检验信噪比(SNR)、Mann-Kendall法、Cramer法和Pettitt法进行气候突变分析。结果表明:乌鲁木齐河流域气温降水突变不明显,不同方法检验的结果不太一致;春、夏季气温可能在1997年发生突变,而秋、冬季在80年代末90年代初发生突变。  相似文献   

20.
赵东升  张家诚  邓思琪  郭彩贇 《地理科学》2021,41(12):2222-2231
基于 1960—2018 年的逐日降水观测数据,采用日尺度旱涝急转指数(DWAAI)计算方法,以生态地理区为框架,识别并分析了西南地区旱涝急转事件的时空变化特征。结果表明:西南地区旱涝急转事件的发生次数在 1960—2010年有增加趋势,在 2011—2018 年快速减少;旱转涝事件多发生在春夏季(4~8 月),涝转旱事件则跨越了春、夏、秋季(5~11 月);在云南高原常绿阔叶林、松林区(VA5),西双版纳山地季雨林、雨林区(VIIA3),闽粤桂低山平原常绿阔叶林、人工植被区(VIA2),旱涝急转事件主要发生在夏季,而在湘黔高原山地常绿阔叶林区(VA3)和四川盆地常绿阔叶林、人工植被区(VA4),旱涝急转事件主要发生在春季;旱涝急转事件发生次数的空间分布呈现东北多、西南少的格局;2000 年以来旱涝急转事件在滇中南亚高山谷地常绿阔叶林、松林区(VIA3)和闽粤桂低山平原常绿阔叶林、人工植被区(VIA2)发生次数减少,但有加重趋势,呈现极端化特征。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号