首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 116 毫秒
1.
This paper obtained a set of consecutive and long-recorded observational snow depth data from 51 observation stations by choosing, removing and interpolating original observation data over the Tibetan Plateau for 1961–2006. We used monthly precipitation and temperature data from 160 stations in China for 1951–2006, which was collected by the National Climate Center. Through calculating and analyzing the correlation coefficient, significance test, polynomial trend fitting, composite analysis and abrupt change test, this paper studied the interdecadal change of winter snow over the Tibetan Plateau and its relationship to summer precipitation and temperature in China, and to tropospheric atmospheric temperature. This paper also studied general circulation and East Asian summer monsoon under the background of global warming.  相似文献   

2.
The net accumulation record of ice core is one of the most reliable indicators for reconstructing precipitation changes in high mountains.A 20.12 m ice core was drilled in 2006 from the accumulation zone of Laohugou Glacier No.12 in the northeastern Tibetan Plateau,China.We obtained the precipitation from the ice core net accumulation during 1960-2006,and found out the relationship between Laohugou ice core record and other data from surrounding sites of the northeastern Tibetan Plateau.Results showed that during 1960-2006,the precipitation in the high mountains showed firstly an increasing trend,while during 1980 to 2006 it showed an obvious decreasing trend.Reconstructed precipitation change in the Laohugou glacier basin was consistent with the measured data from the nearby weather stations in the lower mountain of Subei,and the correlation coefficient was 0.619(P<0.001).However,the precipitation in the high mountain was about 3 times more than that of the lower mountain.The precipitation in Laohugou Glacier No.12 of the western Qilian Mountains corresponded well to the net accumulation of Dunde ice core during the same period,tree-ring reconstructed precipitation,the measured data of multiple meteorological stations in the northeastern Tibetan Plateau,and also the changes of adjacent PDSI drought index.Precipitation changes of the Laohugou glacier basin and other sites of the northeastern Tibetan Plateau had significantly positive correlation with ENSO,which implied that the regional alpine precipitation change was very likely to be influenced by ENSO.  相似文献   

3.
By using the observed monthly mean temperature and humidity datasets of 14 radiosonde stations and monthly mean precipitation data of 83 surface stations from 1979 to 2008 over the Tibetan Plateau(TP),the relationship between the atmospheric water vapor(WV) and precipitation in summer and the precipitation conversion efficiency(PEC) over the TP are analyzed.The results are obtained as follows.(1) The summer WV decreases with increasing altitude,with the largest value area observed in the northeastern part of the TP,and the second largest value area in the southeastern part of the TP,while the northwestern part is the lowest value area.The summer precipitation decreases from southeast to northwest.(2) The summer WV presents two main patterns based on the EOF analysis:the whole region consistent-type and the north-south opposite-type.The north-south opposite-type of the summer WV is similar to the first EOF mode of the summer precipitation and both of their zero lines are located to the north of the Tanggula Mountains.(3) The summer precipitation is more(less) in the southern(northern) TP in the years with the distribution of deficient summer WV in the north while abundant in the south,and vice versa.(4) The PEC over the TP is between 3% and 38% and it has significant spatial difference in summer,which is obviously bigger in the southern TP than that in the northern TP.  相似文献   

4.
Based on a 0.5°×0.5° daily gridded precipitation dataset and observations in meteorological stations released by the National Meteorological Information Center,the interannual variation of areal precipitation in the Qilian Mountains during 1961–2012 is investigated using principal component analysis(PCA) and regression analysis,and the relationship between areal precipitation and drought accumulation intensity is also analyzed.The results indicate that the spatial distribution of precipitation in the Qilian Mountains can be well reflected by the gridded dataset.The gridded data-based precipitation in mountainous region is generally larger than that in plain region,and the eastern section of the mountain range usually has more precipitation than the western section.The annual mean areal precipitation in the Qilian Mountains is 724.9×108 m3,and the seasonal means in spring,summer,autumn and winter are 118.9×108 m3,469.4×108 m3,122.5×108 m3 and 14.1×108 m3,respectively.Summer is a season with the largest areal precipitation among the four seasons,and the proportion in summer is approximately 64.76%.The areal precipitation in summer,autumn and winter shows increasing trends,but a decreasing trend is seen in spring.Among the four seasons,summer have the largest trend magnitude of 1.7×108 m3?a–1.The correlation between areal precipitation in the mountainous region and dry-wet conditions in the mountains and the surroundings can be well exhibited.There is a negative correlation between drought accumulation intensity and the larger areal precipitation is consistent with the weaker drought intensity for this region.  相似文献   

5.
A total of 12 indices of temperature extremes and 11 indices of precipitation ex-tremes at 111 stations in southwestern China at altitudes of 285-4700 m were examined for the period 1961-2008. Significant correlations of temperature extremes and elevation in-cluded the trends of diurnal temperature range, frost days, ice days, cold night frequency and cold day frequency. Regional trends of growing season length, warm night frequency, coldest night and warmest night displayed a statistically significant positive correlation with altitude. These characteristics indicated the obvious warming with altitude. For precipitation extreme indices, only the trends of consecutive dry days, consecutive wet days, wet day precipitation and the number of heavy precipitation days had significant correlations with increasing alti-tude owing to the complex influence of atmospheric circulation. It also indicated the increased precipitation mainly at higher altitude areas, whereas the increase of extreme precipitation events mainly at lowers altitude. In addition, the clearly local influences are also crucial on climate extremes. The analysis revealed an enhanced sensitivity of climate extremes to ele-vation in southwestern China in the context of recent warming.  相似文献   

6.
Having analyzed the tree ring width and maximum latewood density of Pinus densata from west Sichuan, we obtained different climate information from tree-ring width and maximum latewood density chronology. The growth of tree ring width was responded princi- pally to the precipitation in current May, which might be influenced by the activity of southwest monsoon, whereas the maximum latewood density reflected summer temperature (June-September). According to the correlation relationship, a transfer function had been used to reconstruct summer temperature for the study area. The explained variance of reconstruction is 51% (F=52.099, p〈0.0001). In the reconstruction series: before the 1930s, the climate was relatively cold, and relatively warm from 1930 to 1960, this trend was in accordance with the cold-warm period of the last 100 years, west Sichuan. Compared with Chengdu, the warming break point in west Sichuan is 3 years ahead of time, indicating that the Tibetan Plateau was more sensitive to temperature change. There was an evident summer warming signal after 1983. Although the last 100-year running average of summer temperature in the 1990s was the maximum, the running average of the early 1990s was below the average line and it was cold summer, but summer drought occurred in the late 1990s.  相似文献   

7.
MODIS-based estimation of air temperature of the Tibetan Plateau   总被引:1,自引:0,他引:1  
The immense and towering Tibetan Plateau acts as a heating source and, thus, deeply shapes the climate of the Eurasian continent and even the whole world. However, due to the scarcity of meteorological observation stations and very limited climatic data, little is quantitatively known about the heating effect and temperature pattern of the Tibetan Plateau. This paper collected time series of MODIS land surface temperature (LST) data, together with meteorological data of 137 stations and ASTER GDEM data for 2001-2007, to estimate and map the spatial distribution of monthly mean air temperatures in the Tibetan Plateau and its neighboring areas. Time series analysis and both ordinary linear regression (OLS) and geographical weighted regression (GWR) of monthly mean air temperature (Ta) with monthly mean land surface temperature (Ts) were conducted. Regression analysis shows that recorded Ta is rather closely related to Ts, and that the GWR estimation with MODIS Ts and altitude as independent variables, has a much better result with adjusted R 2 〉 0.91 and RMSE = 1.13-1.53℃ than OLS estimation. For more than 80% of the stations, the Ta thus retrieved from Ts has residuals lower than 2℃. Analysis of the spatio-temporal pattern of retrieved Ta data showed that the mean temperature in July (the warmest month) at altitudes of 4500 m can reach 10℃. This may help explain why the highest timberline in the Northern Hemisphere is on the Tibetan Plateau.  相似文献   

8.
The distribution of winter-spring snow cover over the Tibetan Plateau(TP) and its relationship with summer precipitation in the middle and lower reaches of Yangtze River Valley(MLYRV) during 2003–2013 have been investigated with the moderate-resolution imaging spectrometer(MODIS) Terra data(MOD10A2) and precipitation observations. Results show that snow cover percentage(SCP) remains approximately 20% in winter and spring then tails off to below 5% with warmer temperature and snow melt in summer. The lower and highest percentages present a declining tendency while the middle SCP exhibits an opposite variation. The maximum value appears from the middle of October to March and the minimum emerges from July to August. The annual and winter-spring SCPs present a decreasing tendency. Snow cover is mainly situated in the periphery of the plateau and mountainous regions, and less snow in the interior of the plateau, basin and valley areas in view of snow cover frequency(SCF) over the TP. Whatever annual or winter-spring snow cover, they all have remarkable declining tendency during 2003–2013, and annual snow cover presents a decreasing trend in the interior of the TP and increasing trend in the periphery of the TP. The multi-year averaged eight-day SCP is negatively related to mean precipitation in the MLYRV. Spring SCP is negatively related to summer precipitation while winter SCP is positively related to summer precipitation in most parts of the MLYRV. Hence, the influence of winter snow cover on precipitation is much more significant than that in spring on the basis of correlation analysis. The oscillation of SCF from southeast to northwest over the TP corresponds well to the beginning, development and cessation of the rain belt in eastern China.  相似文献   

9.
中国东部植被NDVI对气温和降水的时空响应(英文)   总被引:8,自引:4,他引:4  
Temporal and spatial response characteristics of vegetation NDVI to the variation of temperature and precipitation in the whole year,spring,summer and autumn was analyzed from April 1998 to March 2008 based on the SPOT VGT-NDVI data and daily temperature and precipitation data from 205 meteorological stations in eastern China.The results indicate that as a whole,the response of vegetation NDVI to the variation of temperature is more pronounced than that of precipitation in eastern China.Vegetation NDVI maxi...  相似文献   

10.
青藏高原地气温差变化及空间分布   总被引:2,自引:0,他引:2  
The difference between ground soil and air temperature (Ts-Ta) was studied by using the data of ground and air temperature of 99 stations over the Qinghai-Xizang (Tibet) Plateau from 1960 to 2000,and its spatial distribution and time changing tendency have been diagnosed by principal component analysis and power spectral analysis methods. The results show that the values of (Ts-Ta) are the maximum in June and the minimum in December. The first three loading eigenvectors, which reflect the main spatially anomalous structure of (Ts-Ta) over the Qinghai-Xizang Plateau, contain the contrary changing pattern between the northwestern and the southeastern regions, the pattern response of the sea level elevation and the geography, and the pattern response of the distribution of the permafrost. There are four patterns of time evolution including the patterns of monotonous increasing or decreasing trends, the basic stability pattern and the parabola pattern with the minimum value. (Ts-Ta) has a periodic variation about 2 years. According to the spatial distribution of the third loading eigenvectors of (Ts-Ta) over the Qinghai-Xizang Plateau in cold season, the permafrost response region and the seasonal frozen ground response region are identified.  相似文献   

11.
The summer day-by-day precipitation data of 97 meteorological stations on the Qinghai–Tibet Plateau from 1961 to 2004 were selected to analyze the temporal-spatial dis-tribution through accumulated variance, correlation analysis, regression analysis, empirical orthogonal function, power spectrum function and spatial analysis tools of GIS. The result showed that summer precipitation occupied a relatively high proportion in the area with less annual precipitation on the Plateau and the correlation between summer precipitation and annual precipitation was strong. The altitude of these stations and summer precipitation ten-dency presented stronger positive correlation below 2000 m, with correlation value up to 0.604 (α=0.01). The subtracting tendency values between 1961–1983 and 1984–2004 at five altitude ranges (2000–2500 m, 2500–3000 m, 3500–4000 m, 4000–4500 m and above 4500 m) were above zero and accounted for 71.4% of the total. Using empirical orthogonal function, summer precipitation could be roughly divided into three precipitation pattern fields: the Southeast Plateau Pattern Field, the Northeast Plateau Pattern field and the Three Rivers' Headstream Regions Pattern Field. The former two ones had a reverse value from the north to the south and opposite line was along 35°N. The potential cycles of the three pattern fields were 5.33a, 21.33a and 2.17a respectively, tested by the confidence probability of 90%. The station altitudes and summer precipitation potential cycles presented strong negative corre-lation in the stations above 4500 m, with correlation value of –0.626 (α=0.01). In Three Rivers Headstream Regions summer precipitation cycle decreased as the altitude rose in the sta-tions above 3500 m and increased as the altitude rose in those below 3500 m. The empirical orthogonal function analysis in June precipitation, July precipitation and August precipitation showed that the June precipitation pattern field was similar to the July’s, in which southern Plateau was positive and northern Plateau negative. But positive value area in July precipita-tion pattern field was obviously less than June’s. The August pattern field was totally opposite to June’s and July’s. The positive area in August pattern field jumped from the southern Pla-teau to the northern Plateau.  相似文献   

12.
近44 年来青藏高原夏季降水的时空分布特征   总被引:13,自引:3,他引:10  
利用1961-2004 年青藏高原97 个站点的夏季逐日降水数据,通过累积距平、相关分析、回归分析、经验正交函数分解、功率谱方法等,结合GIS 的空间分析功能,分析了夏季 降水的时空分布特征。结果表明:在青藏高原年降水量比较少的地区,夏季降水占全年降水的比例较高,夏季降水与全年降水的相关性也较强;夏季降水相对变率最大的地区位于青藏 高原西北的最干旱地区,最小的地区是三江源区;夏季降水趋势增加和减少的站点分别为54 个和43 个,通过较显著检验的站点占总数的18.6%;在2000m 以下的站点中,海拔和夏季降水气候倾向率存在较强的正相关,相关度达0. 604 (显著性0.01);1961-1983 年和1984-2004 年两个时间段相比,除了3000~3500m 海拔范围外,其余海拔范围夏季降水气候倾向率都表现为增加;夏季降水可大致分为三种类型场:高原东南部类型场、高原东北部类型场和三江 源类型场,高原东南部类型场和高原东北部类型场表现出南北变化相反的降水特点,分界线大致沿着35oN 线;在90%的置信概率下,三种类型场分别表现出5.33 年、21.33 年和2.17 年的潜在周期;4500 m 以上海拔范围的站点夏季降水周期通过很显著检验(α = 0.01),站点海拔和降水周期存在-0.626 的高相关度;在三江源地区,3500 m 以上的站点夏季降水周期随海拔升高而减小,3500 m 以下的夏季降水周期随海拔高度升高而增加。  相似文献   

13.
利用吐哈盆地2011-2015年逐时FY-2E静止气象卫星红外云图资料,吐鲁番市1976-2015年5个国家气象站和2013-2015年26个区域气象站降水资料,采用卫星资料反演和统计分析方法,首次定义TK(地面气温与云顶亮温的差值)来规避地面辐射对卫星接收辐射的影响,分析吐鲁番盆地各级别TBB(-10~-20℃、-20~-30℃、-30~-40℃、-40~-50℃)云的分布状况及其与降水的关系、降水的时空分布特征和变化趋势。结果表明,吐鲁番盆地TBB各级别云覆盖度与海拔高度显著正相关,云量从盆地平原区向山区递增;TK的月变化同月降水具有较好的正相关性,TK正值时段4~8月与盆地汛期相对应,TK极大值对应月降水量最大的6月;降水与海拔高度显著正相关,降水先随海拔高度增加而增多,1 400~1 900 m区域是降水量和降水垂直变率最大的区域,之后降水随海拔高度增加而减少;降水高度集中在夏季与秋季,6月降水最多(占3~4成);降水集中出现在白天,平原地区集中在早晨至中午,山区集中在下午至傍晚。综合分析得出吐鲁番盆地人工增水作业区域、作业月份、作业"时间窗"选择的参考依据,其中最佳作业区域在1 400~1 900 m,最佳作业月份为6月,最佳作业"时间窗"为上午的06~10时与下午的14~18时。  相似文献   

14.
青藏高原夏季上空水汽含量演变特征及其与降水的关系   总被引:1,自引:0,他引:1  
周顺武  吴萍  王传辉  韩军彩 《地理学报》2011,66(11):1466-1478
利用青藏高原(以下简称高原) 近30 年(1979-2008 年) 14 个探空站的温度和湿度观测资料以及83 个地面台站的月平均降水资料,分析了高原夏季上空水汽含量与地面降水的联系以及高原地区的降水转化率问题。结果表明:1) 高原夏季水汽含量在空间分布上表现出随海拔高度增高而减少的特征,其中东北部为最大值,东南部为次大值,而西北部为最小值。夏季降水整体上由东南向西北递减;2) EOF分解表明,高原夏季水汽含量存在两种主要的空间分布型:即全区一致变化型和南北反向变化型,其中以唐古拉山脉北侧为界呈现出的水汽含量南北反向型与降水的第一特征向量场表现出的南北反向型在空间分布上十分相似;3) 在年际变化上,高原夏季水汽含量的南北反向型与降水的南北反向型之间存在较一致的对应关系:即水汽含量出现南多北少时,高原南部降水普遍偏多而北部降水普遍偏少,反之亦然;4) 高原夏季平均降水转化率在3%~38%之间,其空间差异非常明显,高原南部降水转化率明显大于北部地区。  相似文献   

15.
曹彦超  焦美玲  秦拓  郭桐 《干旱区地理》2022,45(6):1695-1706
基于1973—2020年4—9月甘肃河东60个国家气象观测站的降水资料,采用经验正交函数分解、相关分析等方法,分析了不同量级降水的时空分布及变化特征,并讨论了气温、大尺度环流、地形等对夏季降水的影响。结果表明:(1) 河东西部位于季风区最末端,气温变化对降水影响相对显著。其中甘南高原及以北山区海拔高度高,输入性水汽少,气候变暖对水循环的促进使降水量趋于增多。西部其他区域输入性水汽仍占主导地位,冷空气活动减弱使降水量趋于减少。(2) 河东东部地形过渡平缓,降水受季风影响显著。1998年后Niño 3.4区(5°N~5°S、120°~170°W)海温转为负距平为主,随着季风增强及雨带北抬,降水量随之增长。(3) 河东地区降水量年际变化的主要特征是所有站点同时增大或减小,但在拉尼娜年更容易出现东、西部降水反相变化的特征,太平洋年代际振荡负相位时西部地区降水增多,东部部分站点减少,北极涛动负相位时,东南部降水增多,西部部分站点减少。甘肃河东夏半年降水变化及影响分析,不仅为复杂地形下大气环流和气候变暖对降水变化影响的差异性研究提供参考,还将丰富季风区末端降水预测依据。  相似文献   

16.
利用1961年以来美国国家环境预报中心(NCEP)月平均再分析风场、高度场、NOAA重构海表温度以及西北地区中部54个气象站6月逐日降水资料、1979年以来北极10个区域的海冰面积,通过分析2019年6月西北地区中部降水异常的成因,揭示出对该区域6月降水具有显著影响的关键海区海冰面积及时段、北大西洋三极子(NAT)关键影响时段,结合厄尔尼诺-南方涛动(ENSO)事件,分析其协同作用及影响机制。结果表明:1990年以来春季3-4月楚科奇海海冰面积异常容易激发欧亚中高纬度EU2(欧亚2型)遥相关型(即夏季EU(欧亚)遥相关型),有利于西北地区中部降水异常,1992年以来春季NAT对EU2遥相关型有明显影响,但其影响小于楚科奇海海冰面积的影响;当楚科奇海海冰面积偏少和NAT正位相(海冰面积偏多和NAT负位相)协同作用时,西北地区中部降水偏多(偏少)的概率明显增大;ENSO事件对西北地区中部6月降水无明显直接影响,但厄尔尼诺事件次年使得副热带高压异常偏强、偏西。2019年楚科奇海海冰面积异常偏少,春季NAT异常偏强,两者协同作用下使得EU2遥相关型正异常(“+-+-”),尤其使得贝加尔湖附近的阻塞高压异常偏强,鄂霍次克海和乌拉尔山附近低压异常深厚,厄尔尼诺事件使副热带高压异常偏强、偏西,将西太平洋的水汽输送至北太平洋,与鄂霍次克海附近的深厚低压相接,充足的冷空气和水汽导致西北地区中部出现异常降水。研究成果可为短期气候预测提供依据,同时,气-冰-海之间的相互作用需要更进一步研究。  相似文献   

17.
利用陕西黄土高原地区68个气象站降水资料,选择标准化降水指数(SPI)为干旱指标,分析了该地区最近40年(1971—2010年)的月、季、年干旱特征,在此基础上利用经验正交函数(EOF)分解方法进行了干旱分区,并分析了全年及各季节干旱站次比和干旱强度的年际变化。结果表明:EOF分解第1、2、3特征向量分别反映了陕西黄土高原地区干旱的一致变化、南-北反向分布和中部-南北反向分布的不同特点;年度干旱站次比和干旱强度有明显的阶段性分布特点,在年代之间有重-轻-重-轻的变化趋势。2001年以来,年度和夏、秋、冬季干旱强度都有不同程度降低,春季干旱有增强趋势。陕北和关中地区的春季、夏季干旱变化趋势相反,秋季、冬季干旱变化趋势一致。地区平均每年出现干旱月3.8个,几乎每年都有干旱月出现,最多的一年可出现6—9个干旱月。  相似文献   

18.
The net accumulation record of ice core is one of the most reliable indicators for reconstructing precipitation changes in high mountains. A 20.12 m ice core was drilled in 2006 from the accumulation zone of Laohugou Glacier No.12 in the northeastern Tibetan Plateau, China. We obtained the precipitation from the ice core net accumulation during 1960-2006, and found out the relationship between Laohugou ice core record and other data from surrounding sites of the northeastern Tibetan Plateau. Results showed that during 1960-2006, the precipitation in the high mountains showed firstly an increasing trend, while during 1980 to 2006 it showed an obvious decreasing trend. Reconstructed precipitation change in the Laohugou glacier basin was consistent with the measured data from the nearby weather stations in the lower mountain of Subei, and the correlation coefficient was 0.619 (P<0.001). However, the precipitation in the high mountain was about 3 times more than that of the lower mountain. The precipitation in Laohugou Glacier No.12 of the western Qilian Mountains corresponded well to the net accumulation of Dunde ice core during the same period, tree-ring reconstructed precipitation, the measured data of multiple meteorological stations in the northeastern Tibetan Plateau, and also the changes of adjacent PDSI drought index. Precipitation changes of the Laohugou glacier basin and other sites of the northeastern Tibetan Plateau had significantly positive correlation with ENSO, which implied that the regional alpine precipitation change was very likely to be influenced by ENSO.  相似文献   

19.
利用内蒙古46个气象台站1960-2012年逐日降水数据,以表征降水年内分配非均匀特征的降水集中度(PCD)和降水集中期(PCP)指标,分析了内蒙古降水年内时间分配特征及变化趋势。结果表明:(1)近53 a内蒙古PCD平均值为0.70,呈显著减少趋势。PCP平均值为194.65°,呈不显著的提前趋势。(2)PCD高值区在阿拉善高原、锡林郭勒高原东部、呼伦贝尔高平原、大兴安岭以东地区,低值区在大兴安岭北部、乌兰察布高原、鄂尔多斯高原。全区PCP则以192°等值线为界,表现出西晚东早的空间分异格局。(3)PCD普遍呈下降趋势,以呼伦贝尔高平原、乌兰察布高原减小趋势最显著。PCP也以提前趋势为主,贺兰山、乌兰布和沙漠一线以东地区为主要的PCP提前区。(4)各站PCD与年降水量均为正相关,通过显著性检验的站点占到了60.8%。PCP与降水量的相关系数较小,显著相关的地区仅占到全区的34.7%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号