首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
黑潮延伸体海表温度锋位置的变化特征   总被引:2,自引:1,他引:1  
High spatial resolution sea surface temperature(SST) data from 1993 to 2013 are used to detect the position of the Kuroshio Extension sea surface temperature front(KEF) from 141°E to 158°E,and the seasonal,monthly and interannual-to-decadal variations of the KEF position are investigated.The latitudinal position of the KEF varies with longitudes:the westernmost part of the KEF from 141°E to 144°E is relatively stable,whereas the easternmost part from 153°E to 158°E exhibits the largest amplitude of its north-south displacement.In the light of the magnitudes of the standard deviations at longitudes,then the KEF is divided into three sections:western part of the KEF(KEFw,141°–144°E),central part of the KEF(KEFc,144°–153°E) and eastern part of the KEF(KEFe,153°–158°E).Further analysis reveals that the KEFw position is dominated by the decadal variability,while the KEFc and KEFe positions change significantly both on interannual and decadal time scales.In addition,the KEFw position is well correlated with the KEF path length.The possible mode leading to the decadal oscillation of the KEFw is further discussed.The KEFw position exhibits significant connections with the Pacific decadal oscillation(PDO) index and the north Pacific gyre oscillation(NPGO) index with a time lag of 40 and 33 months,respectively.  相似文献   

2.
The Luzon Strait is the main impact pathway of the Kuroshio on the circulation in South China Sea (SCS). Based on the analysis of the 1997–2007 altimeter data and 2005–2006 output data from a high resolution global HYCOM model, the total Luzon Strait Transport (LST) has remarkable subseasonal oscillations with a typical period of 90 to 120 days, and an average value of 1.9 Sv into SCS. Further spectrum analysis shows that the temporal variability of the LST at different depth is remarkable different. In the upper layer (0–300 m), westward inflow has significant seasonal and subseasonal variability. In the bottom layer (below 1 200 m), eastward outflow exhibits remarkable seasonal variability, while subseasonal variability is also clear. In the intermediate layer, the westward inflow is slightly bigger than the eastward outflow, and both of them have obvious seasonal and subseasonal variability. Because the seasonal variation of westward inflow and eastward outflow is opposite, the total transport of intermediate layer exhibits significant 50–150 days variation, without obvious seasonal signals. The westward Rossby waves with a period of 90 to 120 days in the Western Pacific have very clear correlationship with the Luzon Strait Transport, this indicates that the interaction between these westward Rossby waves and Kuroshio might be the possible mechanism of the subseasonal variation of the LST.  相似文献   

3.
The mean seasonal variability of turbulent heat fluxes in the tropical Atlantic Ocean is examined using the Woods Hole Oceanographic Institution(WHOI) flux product.The most turbulent heat fluxes occur during winter seasons in the two hemispheres,whose centers are located at 10°~20°N and 5°~15°S respectively.In climatological ITCZ,the turbulent heat fluxes are the greatest from June to August,and in equatorial cold tongue the turbulent heat fluxes are the greatest from March to May.Seasonal variability of sensible heat flux is smaller than that of latent heat flux and mainly is dominated by the variations of air-sea temperature difference.In the region with larger climatological mean wind speed(air-sea humidity difference),the variations of air-sea humidity difference(wind speed) dominate the variability of latent heat flux.The characteristics of turbulent heat flux yielded from theory analysis and WHOI dataset is consistent in physics which turns out that WHOI's flux data are pretty reliable in the tropical Atlantic Ocean.  相似文献   

4.
Ommastrephes bartramii is an ecologically dependent species and has great commercial values among the AsiaPacific countries. This squid widely inhabits the North Pacific, one of the most dynamic marine environments in the world, subjecting to multi-scale climatic events such as the Pacific Decadal Oscillation(PDO). Commercial fishery data from the Chinese squid-jigging fleets during 1995–2011 are used to evaluate the influences of climatic and oceanic environmental variations on the spatial distribution of O. bartramii. Significant interannual and seasonal variability are observed in the longitudinal and latitudinal gravity centers(LONG and LATG) of fishing ground of O. bartramii. The LATG mainly occurred in the waters with the suitable ranges of environmental variables estimated by the generalized additive model. The apparent north-south spatial shift in the annual LATG appeares to be associated with the PDO phenomenon and is closely related to the sea surface temperature(SST)and sea surface height(SSH) on the fishing ground, whereas the mixed layer depth(MLD) might contribute limited impacts to the distribution pattern of O. bartramii. The warm PDO regimes tend to yield cold SST and low SSH, resulting in a southward shift of LATG, while the cold PDO phases provid warm SST and elevated SSH,resulting in a northward shift of LATG. A regression model is developed to help understand and predict the fishing ground distributions of O. bartramii and improve the fishery management.  相似文献   

5.
The long-term time series analysis of the SST (sea surface temperature) in the Eastern Equatorial Pacific Ocean and the monthly MSL (mean sea level) in the tropical Pacific Ocean is conducted. Their quasiperiodic and low-frequency oscillation features are revealed. The significant periods of low-frequency fluctuations for monthly MSL in the area of 20°N-20° S are between 43. 5 months and 50. 0 months, approximating closely to 47. 6 months which is the significant period of SST in the Eastern Equatorial Pacific Ocean. From the results of space-spectral analysis, the low-frequency fluctations of monthly MSL in the tropical Pacific Ocean appear to have a anticlockwise circularly-propagating pattern, which is, the Eastern Pacific Ocean (off-shore of Mexico) →the area of NEC (North Equatorial Current) →the Western Equatorial Pacific Ocean→the area of NECC (North Equatorial Counter-Current)→the Eastern Equatorial Pacific Ocean. The phases of the pattern correspond to those of El Nino cycle. On the basis  相似文献   

6.
The recent decline in the Arctic sea ice has coincided with more cold winters in Eurasia.It has been hypothesized that the Arctic sea ice loss is causing more mid-latitude cold extremes and cold winters,yet there is lack of consensus in modeling studies on the impact of Arctic sea ice loss.Here we conducted modeling experiments with Community Atmosphere Model Version 5(CAM5) to investigate the sensitivity and linearity of Eurasian winter temperature response to the Atlantic sector and Pacific sector of the Arctic sea ice loss.Our experiments indicate that the Arctic sea ice reduction can significantly affect the atmospheric circulation by strengthening the Siberian High,exciting the stationary Rossby wave train,and weakening the polar jet stream,which in turn induce the cooling in Eurasia.The temperature decreases by more than 1°C in response to the ice loss in the Atlantic sector and the cooling is less and more shifts southward in response to the ice loss in the Pacific sector.More interestingly,sea ice loss in the Atlantic and Pacific sectors together barely induces cold temperatures in Eurasia,suggesting the nonlinearity of the atmospheric response to the Arctic sea ice loss.  相似文献   

7.
冬季黑潮延伸体海表温度对阿留申低压活动的双周期响应   总被引:1,自引:1,他引:0  
Based on our previous work, the winter sea surface temperature(SST) in the Kuroshio Extension(KE) region showed significant variability over the past century with periods of ~6 a between 1930 and 1950 and ~10 a between1980 and 2009. How the activity of the Aleutian Low(AL) induces this dual-period variability over the two different timespans is further investigated here. For the ~6 a periodicity during 1930–1950, negative wind stress curl(WSC)anomalies in the central subtropical Pacific associated with an intensified AL generate positive sea surface height(SSH) anomalies. When these wind-induced SSH anomalies propagate westwards to the east of Taiwan, China two years later, positive velocity anomalies appear around the Kuroshio to the east of Taiwan and then the mean advection via this current of velocity anomalies leads to a strengthened KE jet and thus an increase in the KE SST one year later. For the ~10 a periodicity during 1980–2009, a negative North Pacific Oscillation-like dipole takes2–3 a to develop into a significant positive North Pacific Oscillation-like dipole, and this process corresponds to the northward shift of the AL. Negative WSC anomalies associated with this AL activity in the central North Pacific are able to induce the positive SSH anomalies. These oceanic signals then propagate westward into the KE region after 2–3 a, favoring a northward shift of the KE jet, thus leading to the warming of the KE SST. The feedbacks of the KE SST anomaly on the AL forcing are both negative for these two periodicities. These results suggest that the dual-period KE SST variability can be generated by the two-way KE-SST-AL coupling.  相似文献   

8.
The statistical characteristics and mechanisms of mesoscale eddies in the North Indian Ocean are investigated by adopting multi-sensor satellite data from 1993 to 2019. In the Arabian Sea(AS), seasonal variation of eddy characteristics is remarkable, while the intraseasonal variability caused by planetary waves is crucial in the Bay of Bengal(BOB). Seasonal variation of the eddy kinetic energy(EKE) is distinct along the west boundary of AS,especially in the Somali Current region. In the BOB, lar...  相似文献   

9.
In this paper, effort is made to demonstrate the quality of high-resolution regional ocean circulation model in realistically simulating the circulation and variability properties of the northern Indian Ocean(10°S–25°N,45°–100°E) covering the Arabian Sea(AS) and Bay of Bengal(BoB). The model run using the open boundary conditions is carried out at 10 km horizontal resolution and highest vertical resolution of 2 m in the upper ocean.The surface and sub-surface structure of hydrographic variables(temperature and salinity) and currents is compared against the observations during 1998–2014(17 years). In particular, the seasonal variability of the sea surface temperature, sea surface salinity, and surface currents over the model domain is studied. The highresolution model's ability in correct estimation of the spatio-temporal mixed layer depth(MLD) variability of the AS and BoB is also shown. The lowest MLD values are observed during spring(March-April-May) and highest during winter(December-January-February) seasons. The maximum MLD in the AS(BoB) during December to February reaches 150 m (67 m). On the other hand, the minimum MLD in these regions during March-April-May becomes as low as 11–12 m. The influence of wind stress, net heat flux and freshwater flux on the seasonal variability of the MLD is discussed. The physical processes controlling the seasonal cycle of sea surface temperature are investigated by carrying out mixed layer heat budget analysis. It is found that air-sea fluxes play a dominant role in the seasonal evolution of sea surface temperature of the northern Indian Ocean and the contribution of horizontal advection, vertical entrainment and diffusion processes is small. The upper ocean zonal and meridional volume transport across different sections in the AS and BoB is also computed. The seasonal variability of the transports is studied in the context of monsoonal currents.  相似文献   

10.
Time-series measurements of dissolved inorganic carbon (DIC) and nutrient concentrations were conducted in the northwestern North Pacific from October 2002 to August 2004. Assuming that data obtained in different years represented time-series seasonal data for a single year, vertical distributions of DIC and nutrients showed large seasonal variabilities in the surface layer (∼100 m). Seasonal variabilities in normalized DIC (nDIC) and nitrate concentrations at the sea surface were estimated to be 81–113 μmol kg−1 and 12.7–15.7 μmol kg−1, respectively, in the Western Subarctic Gyre. The variability in nutrients between May and July was generally at least double that in other seasons. In the Western Subarctic Gyre, estimations based on statistical analyses revealed that seasonal new production was 39–61 gC m−2 and tended to be higher in the southwestern regions or coastal regions. The seasonal new productions in the northwestern North Pacific were two or more times higher than in the North Pacific subtropical gyre and the northeastern North Pacific. It is likely that this difference is due to spatial variations in the concentrations of trace metals and the species of phytoplankton present. In addition, from estimations of surface pCO2 it was verified that the Western Subarctic Gyre is a source of atmospheric CO2 between February and May and a sink for CO2 between July and October.  相似文献   

11.
The position and strength of the surface Kuroshio Extension Front (KEF), defined as the sea surface temperature (SST) gradient maximum adjacent to the Kuroshio Extension (KE) axis (approximated by a specific SSH contour consistently located at, or near, the maximum of the SSH gradient magnitude), have been studied using weekly, microwave SST measurements from the later 1997 to early 2008. The mean KEF meanders twice around ∼36°N between the east coast of Japan and 153°E. It then migrates southeast to ∼34°N, just before reaching the Shatsky Rise (∼158°E), then progresses mostly eastward. Spatially, the KEF is strongest near the Japan coast, while it is seasonally strongest in winter and weakest in summer. Low-frequency variations of its strength, most notably in its upstream region, can be related to the known bimodal states of the KE. During 2003–2005, when the KE was in its stable state, the winter KEF SST gradient exceeded 10°C/100 km.  相似文献   

12.
The mechanism governing the mean state and the seasonal variation of the transports through the straits of the Japan Sea is studied using a newly presented, simple analytical model and a basin scale general circulation model (GCM). The GCM reproduces the transports through the straits of the Japan Sea realistically owing to its fine horizontal resolution of about 20 km and realistic topography. A series of experiments conducted by changing surface forcing shows that the annual mean wind-driven circulation in the North Pacific Ocean is most responsible for the formation of the mean transports. It is also found that the seasonal variation of the alongshore component of monsoonal wind stress over the North Pacific basin, especially that over the Okhotsk Sea, is responsible for the seasonal variation of the transports. The simple analytical model can explain these simulated features very well. The physical concept of this model is based on the formation of the around-island circulation through the adjustment of coastally trapped waves and Rossby waves and geostrophic control at the narrow straits. It solves the sea surface heights (SSHs) at the edge of each strait and the transport through it. The value of the line integral of the SSH along the island is determined by the baroclinic Rossby waves approaching the island from the east and the alongshore wind stress around the island. The basin scale seasonal variation of SSH along the coast induced by the variation of the alongshore monsoonal wind stress can also be incorporated into this model by giving the SSH anomaly at the northeastern point of the Soya Strait. Thus, it is suggested that both the mean state and the seasonal variation are caused mainly by wind stress forcing. Minor modification by the seasonal heat flux forcing brings the amplitude and the phase of the seasonal variation closer to the observed values.  相似文献   

13.
TOPEX/POSEIDON altimeter data are analyzed for the 8.5-year period November 1992 to May 2001 to investigate the sea surface height (SSH) and geostrophic velocity signatures of quasi-annual equatorially trapped Rossby waves in the Pacific. The latitudinal structures of SSH and both components of geostrophic velocity are found to be asymmetric about the equator across the entire Pacific with larger amplitude north of the equator. The westward phase speeds are estimated by several different methods to be in the range 0.5-0.6 m s−1. These observed characteristics are inconsistent with the classical theory for first vertical, first meridional mode equatorially trapped Rossby waves, which predicts a phase speed of about 0.9 m s−1 with latitudinally symmetric structures of SSH and zonal velocity and antisymmetric structure of meridional velocity. The observations are even less consistent with the latitudinal structures of SSH and geostrophic velocity components for other modes of the classical theory.The latitudinal asymmetries deduced here have also been consistently observed in past analyses of subsurface thermal data and altimeter data and have been variously attributed to sampling errors in the observational data, a superposition of multiple meridional Rossby wave modes, asymmetric forcing by the wind, and forcing by cross-equatorial southerly winds in the eastern Pacific. We propose a different mechanism to account for the observed asymmetric latitudinal structure of low-frequency equatorial Rossby waves. From the free-wave solutions of a simple 1.5-layer model, it is shown that meridional shears in the mean equatorial current system significantly alter the potential vorticity gradient in the central and eastern tropical Pacific. The observed asymmetric structures of sea surface height and geostrophic velocity components are found to be a natural consequence of the shear modification of the potential vorticity gradient. The mean currents also reduce the predicted westward phase speed of first meridional mode Rossby waves, improving consistency with the observations.  相似文献   

14.
INTRODUCTIONBeing a current of high temperature and high salinity, the Kuroshio carries a large amount ofheat from low latitude tropical ocean to high latitude ocean, and plays an imPOrtant role in theheat balance in East Asia. The variability of the Kurosl,io can affect the climate of East Asia, aswell as the ocean environment and the fishery resources. A lot of studies showed that the variabilitiies of the Kuroshio were related to the global changes especially to the onset of ENSO.…  相似文献   

15.
The interannual variations of sea level at Chichi-jima and five other islands in the subtropical North Pacific are calculated for 1961–95 with a model of Rossby waves excited by wind. The Rossby-wave forcing is significant east of 140°E. Strong forcing of upwelling (downwelling) Rossby wave occurs during El Niño (La Niña) and warm (cold) water anomaly in the eastern equatorial Pacific. The first and second baroclinic modes of Rossby wave are more strongly generated than the barotropic mode in the study area. A higher vertical mode of Rossby wave propagates more slowly and is more decayed by eddy dissipation. The best coefficient of vertical eddy dissipation is determined by comparing the calculated sea level with observation. The variation in sea level at Chichi-jima is successfully calculated, in particular for the long-term change of the mean level between before and after 1986 with a rise in 1986 as well as the variations with periods of two to four years after 1980. It is concluded that variations of sea level at Chichi-jima are produced by wind-forced Rossby waves, the first baroclinic wave primarily and the barotropic wave secondly. The calculation for other islands is less successful. Degree of the success in calculation almost corresponds to a spatial difference in quantity of wind data, and seems to be determined by quality of wind data.  相似文献   

16.
张永垂  张立凤 《海洋与湖沼》2013,44(6):1409-1417
根据海洋Rossby波的西传特性, 使用一阶斜压Rossby波模型对北太平洋海表面高度的年际变异进行了回报和预测研究。回报结果表明, Rossby 波模型能够较好地模拟北太平洋海表面高度的年际变异。尤其是黑潮延伸区的下游, 模拟结果与卫星观测的相关系数达到0.8以上。预测结果表明, Rossby 波模型在两个纬向分布的海域有显著的预报能力, 分别位于高纬度中部和副热带环流西部。前者可提前5—6年, 后者可提前2—4年。此外, 重点开展了Rossby波模型在西北太平洋的预报能力研究。结果表明, Rossby波模型对中国的边缘海有着很好的预测能力, 包括南海北部、台湾以东和东海黑潮海域, 分别在提前32、40和52个月时能取得最佳的预测效果。  相似文献   

17.
江南雨季地理区域及起止时间的客观确定   总被引:3,自引:0,他引:3  
本文基于国家气象信息中心整编的全国1 675个台站观测资料以及NCEP/NCAR的再分析资料,定义了候降水指数,利用旋转正交经验函数分解(REOF)法对全国候降水的季节进程进行了诊断分析,得到了表征气候态降水逐候进程的南、北方模态及各自的时间系数,发现REOF第二模态对应降水季节进程中的江南雨季。综合考虑我国南方(31°N以南、110°E以东区域)气候态降水的候进程、降水季节进程(4-6月降水指数减去6-8月降水指数)年际变率以及雨季(4-6月降水指数)降水年际变率的一致性,客观定义了江南雨季的地理范围。利用客观划定区域内的降水指数、925hPa经向风以及西北太平洋副热带高压500hPa脊线位置3个指标,制定了判定江南雨季起止时间的方法,进而对1961-2012年江南雨季起止时间进行了客观确定,给出了江南雨季起止时间序列。本文旨在为规范江南雨季的监测提供参考和借鉴,并为其预测提供科学基础。  相似文献   

18.
The Mindanao Dome (MD) features prominent oceanic variability and is located geographically close to the bifurcation latitude Y b of the Pacific North Equatorial Current. In this study, the role of the MD in the variability of Y b is examined with 20 years of satellite altimetric sea surface height (SSH) data and a 1.5-layer linear Rossby wave model. It is shown that the seasonal variations of surface Y b are related to not only the SSH fluctuations near the bifurcation point (bifurcation box; 125°–130°E, 12°–15°N) but also those outstanding in the MD region (MD box; 127°–132°E, 6°–9°N). The impact of the MD SSH changes is significant when the bifurcation point stays at southerly latitudes during February–September, which hinders (delays) the southward leap (northward retreat) of Y b in April–May (July–August) and thus leads to the asymmetry of the mean Y b seasonal cycle (with a positive skewness of γ = +0.64). Such asymmetry also shows year-to-year variations depending on yearly mean Y b value. A southerly yearly mean Y b involves larger contribution of the MD and thus causes larger asymmetry of Y b seasonal cycle. At interannual and longer timescales, the MD acts to amplify the fluctuations of the bifurcation. It is responsible for about 20 % of the total low-frequency Y b variances and plays an important role in the 0.12° year?1 southward trend of Y b in the past two decades. The impact of the MD on Y b changes is becoming increasingly significant at various timescales such as the bifurcation point migrating southward in recent years.  相似文献   

19.
厄尔尼诺/拉尼娜信号循环回路及其传播特性研究   总被引:4,自引:0,他引:4  
基于1992~2001年卫星高度计资料分析了海面高度距平在厄尔尼诺/拉尼娜(El Niño/La Niña)现象中的演变过程,发现:(1)在El Niño过程中,海面高度正距平信号从西太平洋沿赤道海域向东传播至东海岸,然后分成南北两支,北支在10°N附近从东太平洋传回西太平洋的信号最强,到达西太沿岸海域再传回赤道,表明El Niño信号传播在北半球存在一明显循环回路.赤道以南循环圈不及赤道以北环路清晰.东太平洋的季节变化信号主要通过6°N,10°N和8°S附近的3个通道向西太平洋传播.La Niña信号主要从5°N和7°S向西传播;(2)在大洋海盆尺度快速传播信号背景下,存在波长700~800km的慢速传播信号,两类信号将信息在太平洋内传送.传播速度分析表明,慢速传播信号的相速与Rossby波相速相符,而快速传播信号应该是海洋对大气变异的响应.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号