首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 611 毫秒
1.
From the analyses of the satellite altimeter Maps of Sea Level Anomaly(MSLA) data, tidal gauge sea level data and historical sea level data, this paper investigates the long-term sea level variability in the East China Sea(ECS).Based on the correlation analysis, we calculate the correlation coefficient between tidal gauge and the closest MSLA grid point, then generate the map of correlation coefficient of the entire ECS. The results show that the satellite altimeter MSLA data is effective to observe coastal sea level variability. An important finding is that from map of correlation coefficient we can identify the Kuroshio. The existence of Kuroshio decreases the correlation between coastal and the Pacific sea level. Kurishio likes a barrier or a wall, which blocks the effect of the Pacific and the global change. Moreover, coastal sea level in the ECS is mainly associated with local systems rather than global change. In order to calculate the long-term sea level variability trend, the empirical mode decomposition(EMD) method is applied to derive the trend on each MSLA grid point in the entire ECS. According to the 2-D distribution of the trend and rising rate, the sea level on the right side of the axis of Kuroshio rise faster than in its left side. This result supports the barrier effect of Kuroshio in the ECS. For the entire ECS, the average sea level rose 45.0 mm between 1993 and 2010, with a rising rate of(2.5±0.4) mm/a which is slower than global average.The relatively slower sea level rising rate further proves that sea level rise in the ECS has less response to global change due to its own local system effect.  相似文献   

2.
An improved absolute calibration technology based on indirect measurements was developed through two probative experiments, the performance of which was evaluated by applying the approach to in situ sea surface height(SSH) at the Tianheng Island(tidal gauge) and the satellite nadir(GPS buoy). Using Geoid/MSS(mean sea surface) data, which accounted for a constant offset between nadir and onshore tidal gauge water levels, and TMD(tidal model driver), which canceled out the time-varying offsets, nadir SSH(sea surface height) could be indirectly acquired at an onshore tidal gauge instead of from direct offshore observation. The approach extrapolated the onshore SSH out to the offshore nadir with an accuracy of(1.88±0.20) cm and a standard deviation of 3.3 cm, which suggested that the approach presented was feasible in absolute altimeter calibration/validation(Cal/Val), and the approach enormously facilitated the obtaining SSH from the offshore nadir.  相似文献   

3.
Trajectory of Mesoscale Eddies in the Kuroshio Recirculation Region   总被引:4,自引:1,他引:4  
Trajectories of mesoscale eddies in the Kuroshio recirculation region were investigated by using sea surface height (SSH) anomaly observed by the TOPEX/POSEIDON and ERS altimeters. Cyclonic and anticyclonic eddies have been traced on maps of the filtered SSH anomaly fields composed from the altimeter observations every ten days. Both the cyclonic and anticyclonic eddies propagate westward in the Kuroshio recirculation region from a region south of the Kuroshio Extension. The propagation speed of these eddies has been estimated as about 7 cm s−1, which is much faster than the phase speed theoretically estimated for the baroclinic first-mode Rossby wave in the study area. It was also found that in the Izu-Ogasawara Ridge region, most of eddies pass through the gap between the Hachijojima Island and Ogasawara (Bonin) Islands, and some of the eddies decay around the Izu-Ogasawara Ridge. It seems that the trajectory of the eddies is crucially affected by the bottom topography. In the region south of Shikoku and east of Kyushu, some of the eddies coalesce with the Kuroshio. It is also suggested that this coalescence may trigger the path variation of the Kuroshio in the sea south of Japan. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

4.
应用NCEP/NCAR SST资料和SODA海温资料,分析研究了热带太平洋海温场的变化特征,讨论了气候突变前后热带西太平洋暖池(以下简称WPWP)形态的显著变化及其差异,由此重新界定了WPWP的范围,并进一步分析了WPWP的时空变化特征。结果表明,新界定的WPWP气候平均场与前人定义的气候平均场分布特征基本相同,但也存在一定的差异。新界定的WPWP的优点在于它不仅能够客观反映出气候(海洋)突变前后西太平洋暖池的时空变化特征,而且重要的是可以避免由前人定义的WPWP与东太平洋暖池合为一体的现象发生,从而避免人为地计算WPWP面积变化带来的结果差异。新界定的WPWP平均深度可达130 m左右,呈现出西浅东深的"耳状"分布特征,在冬春季节,南北(经向)窄东西(纬向)宽,呈纬向带状分布;在夏秋季节,WP-WP明显向北扩展。平均深度最大中心位于(5°S,180°)附近。由WPWP区域不同深度的异常海温变化与Niño3指数的相关分析可知,WPWP次表层异常海温变化与Niño3指数呈显著的负相关关系,而与表层的异常海温的关系并不密切,这一结果进一步证明了西太平洋暖池对ENSO的贡献是来自次表层异常海温的东传。  相似文献   

5.
This study investigates the long-term variability of the Kuroshio path south of Japan. Sensitivity experiments using a data-assimilative model suggest that the duration of the large meander (LM) strongly depends on the Kuroshio transport; specifically, low transport leads to a long duration of the LM. Actually, we find a good correlation between the duration of the past LMs and the Sverdrup transport estimated by a wind-driven linear baroclinic vorticity model. Then we explore favorable conditions for the LM and find a close relationship between the Kuroshio Extension (KE) state and the LM. That is, a precondition for the LM that the Kuroshio path on the Izu Ridge is fixed at a deep channel located around 34°N is achieved during a stable KE state. In addition, westward propagating signals with negative anomalies in the Kuroshio region and high sea-surface height (SSH) state east of Taiwan are key for generation of a small meander southeast of Kyushu that triggers a subsequent LM. The signals related to the above conditions change the upstream Kuroshio transport and velocity, which are consistent with features indicated by the former observational studies. Using reanalysis data, we construct long-time series of indices for the three conditions, which explain well the past LMs. The indices suggest that long-term non-LM states around 1970 and in the 1990s were attributed to a low-SSH state east of Taiwan and an unstable KE state, respectively.  相似文献   

6.
冬季黑潮延伸体海表温度对阿留申低压活动的双周期响应   总被引:1,自引:1,他引:0  
Based on our previous work, the winter sea surface temperature(SST) in the Kuroshio Extension(KE) region showed significant variability over the past century with periods of ~6 a between 1930 and 1950 and ~10 a between1980 and 2009. How the activity of the Aleutian Low(AL) induces this dual-period variability over the two different timespans is further investigated here. For the ~6 a periodicity during 1930–1950, negative wind stress curl(WSC)anomalies in the central subtropical Pacific associated with an intensified AL generate positive sea surface height(SSH) anomalies. When these wind-induced SSH anomalies propagate westwards to the east of Taiwan, China two years later, positive velocity anomalies appear around the Kuroshio to the east of Taiwan and then the mean advection via this current of velocity anomalies leads to a strengthened KE jet and thus an increase in the KE SST one year later. For the ~10 a periodicity during 1980–2009, a negative North Pacific Oscillation-like dipole takes2–3 a to develop into a significant positive North Pacific Oscillation-like dipole, and this process corresponds to the northward shift of the AL. Negative WSC anomalies associated with this AL activity in the central North Pacific are able to induce the positive SSH anomalies. These oceanic signals then propagate westward into the KE region after 2–3 a, favoring a northward shift of the KE jet, thus leading to the warming of the KE SST. The feedbacks of the KE SST anomaly on the AL forcing are both negative for these two periodicities. These results suggest that the dual-period KE SST variability can be generated by the two-way KE-SST-AL coupling.  相似文献   

7.
Geosat radar altimeter data during the first year (from November 1986 to November 1987) of its Exact Repeat Mission are analyzed to estimate the eddy kinetic energy and propagation characteristics of anomalies of sea surface dynamic topography (SSDT) for the western North Pacific. SSDT anomalies are compared with anomalies of sea surface temperature (SST) derived from NOAA satellite radiometer data. The eddy kinetic energy (K e ) is large in the Kuroshio stationary meander region and Kuroshio Extension region. In the downstream region of the Kuroshio Extension,K e is especially large on the upstream and downstream sides of prominent bathymetric features. In the interior region of the subtropical gyre is found a zonal tongue of largeK e at around 20–20°N. Westward propagation is dominant in the SSDT and SST anomaly field at mid-latitudes. Longitude-time lag correlation diagrams reveal the coincidence of SSDT and SST anomalies statistically, which fact suggests the baroclinic nature of the anomalies. Zonal phase speeds of SSDT anomalies are approximately equal to the theoretical speeds of baroclinic first-mode long Rossby waves, but the meridional variation of observed phase speeds does not follow the simple theoretical variation of decreasing speeds monotonously with increasing latitudes.  相似文献   

8.
崔伟  王伟  马毅  杨俊钢 《海洋学报》2017,39(2):16-28
本文利用22年的AVISO卫星高度计融合数据,基于WA涡旋自动识别方法对西北太平洋的中尺度涡进行了识别追踪,并统计分析了研究区域中尺度涡的空间分布特征、运动属性以及季节和年际变化。研究结果表明:22年间共追踪到生命周期超过30 d的气旋涡3 841个,反气旋涡2 836个,气旋涡数量多于反气旋涡。涡旋大部分向西移动,西向传播的涡旋分布在整个研究区域,而东向传播的涡旋则集中在黑潮及其延伸区。涡旋主要存在15°~30°N的纬度带间;分别而言,气旋涡主要分布在研究区域的北部和南部,而反气旋涡主要分布在副热带逆流区。30°~35°N之间的黑潮延伸区具有明显更高的涡动能和涡振幅,与同纬度区域相比这里的涡旋半径也较高。在季节和年际变化上,春季出现的中尺度涡最多,夏季最少;对涡旋的月生成数目与ENSO指数MEI比较发现,西北太平洋涡旋活动变化并不直接与ENSO现象相关。  相似文献   

9.
This study compares the seasonal and interannual-to-decadal variability in the strength and position of the Kuroshio Extension front(KEF) using high-resolution satellite-derived sea surface temperature(SST) and sea surface height(SSH) data. Results show that the KEF strength has an obvious seasonal variation that is similar at different longitudes, with a stronger(weaker) KEF during the cold(warm) season. However, the seasonal variation in the KEF position is relatively weak and varies with longitude. In contrast, the low-frequency variation of the KEF position is more distinct than that of the KEF strength even though they are well correlated. On both seasonal and interannual-to-decadal time scales, the western part of the KEF(142°–144°E) has the greatest variability in strength, while the eastern part of the KEF(149°–155°E) has the greatest variability in position. In addition, the relationships between wind-forced Rossby waves and the low-frequency variability in the KEF strength and position are also discussed by using the statistical analysis methods and a wind-driven hindcast model. A positive(negative) North Pacific Oscillation(NPO)-like atmospheric forcing generates positive(negative) SSH anomalies over the central North Pacific. These oceanic signals then propagate westward as Rossby waves, reaching the KE region about three years later, favoring a strengthened(weakened) and northward(southward)-moving KEF.  相似文献   

10.
The sea level difference between Naze and Nishinoomote and sea level anomalies (the residuals after removal of seasonal variations) around the Nansei Islands were examined in relation to the large meander in the Kuroshio south of central Japan. They are indices of surface velocity and geostrophic transport of the Kuroshio in the Tokara Strait and in the East China Sea, respectively. All of them were large during the meandering period, and each of them reached a maximum before or after the generation of the large meander in 1975. Thus the surface velocity and the geostrophic transport of the Kuroshio in the Tokara Strait and the East China Sea were large during the meandering period. The sea level difference between Naze and Nishinoomote (or Makurazaki) shows that the surface velocity and geostrophic transport in the Tokara Strait were significantly larger during the extinction stage in 1963 and during the generation stage in 1975 and were correlated with the position of the Kuroshio east of Kyûshû in 1974 and 1975 before the generation of the large meander.The surface velocity of the Kuroshio southeast of Yakushima (E-line) based on dynamic calculation referred to 1,000 db was weak during the meandering period, and was out of phase with the variation of surface velocity in the Tokara Strait monitored by tide gauge data. The analysis of GEK and hydrographic data shows that southwestward flow existed below 600 m in the slope region on the E-line and weakened during the meandering period. Thus, the out-of-phase variation in surface velocity mentioned above seems to be partly explained by the variation in velocity on the reference level at the E-line.  相似文献   

11.
Using AVISO satellite altimeter observations during 1993–2015 and a manual eddy detection method, a total of 276 anticyclonic rings and 242 cyclonic rings shed from the Kuroshio Extension(KE) were identified, and their three-dimensional(3D) anomaly structures were further reconstructd based on the Argo float data and the Japan Agency for Marine-Earth Science and Technology(JAMSTEC) cruise and buoy data through an interpolation method. It is found that the cyclonic(anticyclonic) rings presented consistent negative(positive) anomalies of potential temperature;meanwhile the relevant maximum anomaly center became increasingly shallow for the cyclonic rings whereas it went deeper for the anticyclonic rings as the potential temperature anomaly decreased from the west to the east. The above deepening or shoaling trend is associated with the zonal change of the depth of the main thermocline. Moreover, the composite cold ring between 140° and 150°E was found to exhibit a double-core vertical structure due to the existence of mode water with low potential vorticity. Specifically, a relatively large negative(positive) salinity anomaly and a small positive(negative) one appeared for the composite cyclonic(anticyclonic) ring at the depth above and below 600 m, respectively. The underlying driving force for the temperature and salinity anomaly of the composite rings was also attempted, which varies depending on the intensity of the background current and the temperature and salinity fields in different areas of the KE region, and the rings’ influences on the temperature and salinity could reach deeper than 1 000 m on average.  相似文献   

12.
Various kinds of datasets, such as satellite-derived sea surface temperature (SST), sea surface height, surface velocity produced by combining surface drifter and satellite altimeter data, and hydrographic data, led to the discovery of an anticyclonic eddy with lower SST than those of surrounding waters in the Kuroshio recirculation region south of Shikoku, as if the eddy were cyclonic. This anticyclonic eddy was formed east of Kyushu in late August to early September 1999 from the merger of two anticyclonic eddies which had migrated in the recirculation region to the sea south of Japan from the east. After the merger, the anticyclonic eddy strengthened abruptly and began to exhibit the low SST. In October, this eddy coalesced with the Kuroshio and moved swiftly eastward, accompanied by an amplitude growth of the Kuroshio meander. In mid November, off the Kii Peninsula, the eddy detached from the meandering Kuroshio. It then moved southwestward and again slowly propagated westward along the 30°N line. During this period, at least from late October 1999 to January 2000, SSTs over the anticyclonic eddy were found to be continuously lower than those of surrounding waters. This case tells us that we have to pay careful attention to the interpretation of mesoscale SST distributions. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

13.
用EOF分析方法对北太平洋及赤道太平洋地区1949~1979年31年海表面温度距平场进行分解,得到几个主要距平海温模态(EOF1~3),分析了EOF1~3的时空分布特征。得到海温距平场的EOF1和EOF2~3模态分别对E1—Nino事件和黑潮大弯曲有很显著的相关性,指出SST第三模态场对黑潮大弯曲的影响具有很好的持续性,持续时间为1~2年。最后讨论了相互的影响过程,为黑潮大弯曲和E1—Nino事件的预报的可能性提供了依据。  相似文献   

14.
The characteristics of the Kuroshio axis south of Kyushu, which meanders almost sinusoidally, are clarified in relation to the large meander of the Kuroshio by analyzing water temperature data during 1961–95 and sea level during 1984–95. The shape of the Kuroshio axis south of Kyushu is classified into three categories of small, medium, and large amplitude of meander. The small amplitude category occupies more than a half of the large-meander (LM) period, while the medium amplitude category takes up more than a half of the non-large-meander (NLM) period. Therefore, the amplitude and, in turn, the curvature of the Kuroshio axis is smaller on average during the LM period than the NLM period. The mean Kuroshio axis during the LM period is located farther north at every longitude south of Kyushu than during the NLM period, with a slight difference west of the Tokara Islands and a large difference to the east. A northward shift of the Kuroshio axis in particular east of the Tokara Islands induces small amplitude and curvature of the meandering shape during the LM period. During the NLM period, the meandering shape and position south of Kyushu change little with Kuroshio volume transport. In the LM formation stage, the variation of the Kuroshio axis is small west of the Tokara Islands but large to the east due to a small meander of the Kuroshio. In the LM decay stage, the Kuroshio meanders greatly south of Kyushu and is located stably near the coast southeast of Kyushu. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

15.
The influences of mesoscale eddies on variations of the Kuroshio path south of Japan have been investigated using time series of the Kuroshio axis location and altimeter-derived sea surface height maps for a period of seven years from 1993 to 1999, when the Kuroshio followed its non-large meander path. It was found that both the cyclonic and anticyclonic eddies may interact with the Kuroshio and trigger short-term meanders of the Kuroshio path, although not all eddies that approached or collided with the Kuroshio formed meanders. An anticyclonic eddy that revolves clockwise in a region south of Shikoku and Cape Shionomisaki with a period of about 5–6 months was found to propagate westward along about 30°N and collide with the Kuroshio in the east of Kyushu or south of Shikoku. This collision sometimes triggers meanders which propagate over the whole region south of Japan. The eddy was advected downstream, generating a meander on the downstream side to the east of Cape Shionomisaki. After the eddy passed Cape Shionomisaki, it detached from the Kuroshio and started to move westward again. Sometimes the eddy merges with other anticyclonic eddies traveling from the east. Coalescence of cyclonic eddies, which are also generated in the Kuroshio Extension region and propagate westward in the Kuroshio recirculation region south of Japan, into the Kuroshio in the east of Kyushu, also triggers meanders which mainly propagate only in a region west of Cape Shionomisaki. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

16.
On the basis of the satellite maps of sea level anomaly(MSLA) data and in situ tidal gauge sea level data,correlation analysis and empirical mode decomposition(EMD) are employed to investigate the applicability of MSLA data,sea level correlation,long-term sea level variability(SLV) trend,sea level rise(SLR) rate and its geographic distribution in the South China Sea(SCS).The findings show that for Dongfang Station,Haikou Station,Shanwei Station and Zhapo Station,the minimum correlation coefficient between the closest MSLA grid point and tidal station is 0.61.This suggests that the satellite altimeter MSLA data are effective to observe the coastal SLV in the SCS.On the monthly scale,coastal SLV in the western and northern part of SCS are highly associated with coastal currents.On the seasonal scale,SLV of the coastal area in the western part of the SCS is still strongly influenced by the coastal current system in summer and winter.The Pacific change can affect the SCS mainly in winter rather than summer and the affected area mostly concentrated in the northeastern and eastern parts of the SCS.Overall,the average SLR in the SCS is 90.8 mm with a rising rate of(5.0±0.4) mm/a during1993–2010.The SLR rate from the southern Luzon Strait through the Huangyan Seamount area to the Xisha Islands area is higher than that of other areas of the SCS.  相似文献   

17.
Time-longitude diagrams of monthly anomalies of TOPEX/Poseidon sea surface height (SSH), Levitus steric height, COADS wind stress curl, as well as meridional surface wind averaged over the northern South China Sea (SCS) from 18° to 22°N, exhibit a coherent westward phase propagation, with a westward propagation speed of about 5 cm s−1. The consistency between oceanic and atmospheric variables indicates that there is a forced Rossby wave in the northern SCS. The horizontal patterns of monthly SSH anomalies from observations and model sensitivity experiments show that the forced Rossby wave, originating to the northwest off Luzon Island, actually propagates west-northwestward towards the Guangdong coast because of zonal migration of the meridional surface wind. The winter Luzon Cold Eddy (LCE), which has been found from field observations, can be identified as a forced Rossby wave with a negative SSH anomaly in winter. It corresponds to strong upwelling and a negative temperature anomaly. Sensitivity experiments show that the wind forcing controls the generation of the LCE, while the Kuroshio is of minor importance.  相似文献   

18.
The position and strength of the surface Kuroshio Extension Front (KEF), defined as the sea surface temperature (SST) gradient maximum adjacent to the Kuroshio Extension (KE) axis (approximated by a specific SSH contour consistently located at, or near, the maximum of the SSH gradient magnitude), have been studied using weekly, microwave SST measurements from the later 1997 to early 2008. The mean KEF meanders twice around ∼36°N between the east coast of Japan and 153°E. It then migrates southeast to ∼34°N, just before reaching the Shatsky Rise (∼158°E), then progresses mostly eastward. Spatially, the KEF is strongest near the Japan coast, while it is seasonally strongest in winter and weakest in summer. Low-frequency variations of its strength, most notably in its upstream region, can be related to the known bimodal states of the KE. During 2003–2005, when the KE was in its stable state, the winter KEF SST gradient exceeded 10°C/100 km.  相似文献   

19.
南海海面高度变化及其与太平洋上涛动信号的关系   总被引:1,自引:1,他引:0  
本文使用循环平稳经验正交函数(CSEOF)方法分析了南海海面高度(SCS-SSH)的时空变化模态,并对它们与太平洋海盆尺度振荡的关系进行了探讨分析。结果表明,SCS-SSH的第一个CSEOF模态是季节变化模态,其变化强度受到一个与厄尔尼诺-南方涛动(ENSO)有关的低频信号的调制,即在厄尔尼诺期间季节变化的幅度减弱(最大可降低30%,1997/98)而在拉尼娜期间季节变化增强。SCS-SSH的第二个CSEOF模态是年际-年代际尺度的低频变化模态,其空间模态的月与月之间的差异微弱,而时间模态和太平洋年代际振荡(PDO)指数高度相关。然后,我们使用独立成分分析(ICA)方法提取了太平洋中的五个主要振荡成分,并检验了它们对SCS-SSH变化的各自影响。分析表明,纯粹的ENSO模态(类似于太平洋东部型ENSO)对SCS-SSH的低频变化的影响比较微弱,而ENSO的红化模态(类似于太平洋中部型ENSO)对SCS-SSH的低频变化具有明显影响。由于ENSO的红化模态是PDO信号的一个主要成分,这一结果解释了为什么在影响SCS-SSH的低频变化上PDO比ENSO更重要。径向鞍型振荡模态、黑潮延伸体处的增温模态、以及赤道的降温模态也由ICA方法提取出来,但它们对SCS-SSH低频变异的影响微弱。进一步的分析表明,太平洋的涛动信号可能以不同的方式来影响南海海面高度变化和海表温度变化。  相似文献   

20.
Satellite-measured along-track and gridded sea surface height (SSH) anomaly products from AVISO are compared with in situ SSH anomaly measurements from an array of 43 pressure-recording inverted echo sounders (PIESs) in the Kuroshio Extension. PIESs measure bottom pressure (P bot) and round-trip acoustic travel time from the sea floor to the sea surface (τ). The P bot and τ measurements are used to estimate, respectively, the mass-loading and steric height variations in SSH anomaly. All comparisons are made after accurate removal of tidal components from all data. Overall good correlations are found between along-track and PIES-derived SSH anomalies with mean correlation coefficient of 0.97. Comparisons between the two measurements reveal that the mass-loading component estimated from P bot is relatively small in this geographical region. It improves regression coefficients about 5?% and decreases mean root-mean-squared (rms) differences from 7.8 to 6.4?cm. The AVISO up-to-date gridded product, which merges all available satellite measurements of Jason-1, Envisat, Geosat Follow-On, and TOPEX/Poseidon interlaced, shows better correlations and smaller rms differences than the AVISO reference gridded product, which merges only Jason-1 and Envisat. Especially, the up-to-date gridded product reveals 6.8?cm rms improvement on average at sites away from Jason-1 ground tracks. Gridded products exhibit low correlation (0.75–0.9) with PIES-derived SSH in a subregion where the SSH fluctuations have relatively high energy at periods shorter than 20?days.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号