首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
利用引入三相云显式降水方案后改进和发展的中尺度模式(MM4)模拟输出资料, 对"96.1"高原暴雪切变线发生、发展的结构进行了运动学和动力学诊断.涡度场演变指出, 高原上局地涡度中心和涡度带的生成和发展不仅与暴雪切变线的形成和发展密切相关, 而且有预测切变线生成的先兆意义; 涡度场、散度场、垂直速度场与相当位温场的剖面结构诊断表明, 运动场和热力场的相互配置与耦合关系极有利于暴雪切变线发展及暴雪形成与维持; 涡度变率诊断结果指出, 涡度正变率中心带初生于暴雪切变线附近, 其时空演变与切变线生成和发展相伴的正涡度中心带垂直结构及演变基本一致.在对涡度变率贡献的诸因子中, 非线性相互作用涡度变率的相对数值最大; 时间平均涡度变率的贡献次之; 与强波扰气流有关的扰动涡度变率贡献最小.在总涡度变率的诸强迫项中, 散度项贡献最大; 水平涡度平流项次之; 垂直涡度输送项和扭转项的贡献相反, 基本上互相抵消.  相似文献   

2.
张小玲  程麟生 《高原气象》2000,19(4):459-466
利用引入三相云显式降水方案后改进和发展的中尺度模式MM4模拟输出资料,对“96.1”暴雪过程的散度及其变率进行诊断分析。结果表明,低空辐合、高空辐散的散度场结构及其演变与暴雪切变线的生成发展及暴雪落区相对应。散度方程计算结果表明,低层散度负变率带及其内中心的生成与发展先于切变线辐合区的形成,揭示了暴雪降水系统的生成与发展,并与未来时刻的降雪强度及落区有较好的对应关系。  相似文献   

3.
"04.12"华北大到暴雪过程切变线的动力诊断   总被引:19,自引:3,他引:19  
利用地面实测资料和MM5模式输出产品,对2004年12月20~22日发生在华北地区的大到暴雪天气过程的切变线进行了动力诊断分析,结果表明:此次暴雪过程与中尺度切变线的发展东移直接关联。涡度诊断表明:正涡度区的演变与切变线的发展、东移和北抬密切相关,正涡度区内“正涡度核”对预报强降雪的出现有先兆指示意义。涡度、散度垂直剖面图显示,涡度、散度场的空间配置极有利于暴雪切变线发展及暴雪形成与维持。湿相对位涡和涡度变率诊断揭示,涡度变率强度与中低空的条件对称不稳定密切相关;暴雪区上空从低层到高层存在的湿位涡负值中心是造成中低层涡度变率增大及暴雪增幅的重要原因之一;而涡度变率较涡度更能准确反映切变线发生发展的物理机制。  相似文献   

4.
利用引入三相云显式降水方案后改进和发展的中尺度模式MM4模拟输出资料,对"96.1”暴雪过程的散度及其变率进行诊断分析.结果表明,低空辐合、高空辐散的散度场结构及其演变与暴雪切变线的生成发展及暴雪落区相对应.散度方程计算结果表明,低层散度负变率带及其内中心的生成与发展先于切变线辐合区的形成,揭示了暴雪降水系统的生成与发展,并与未来时刻的降雪强度及落区有较好的对应关系.  相似文献   

5.
1981年8月14日至22日(“81.8”)发生在陕、甘、川毗邻区的一次持续暴雨过程,与伴有切变线的低涡持续发展直接关联。涡度变率诊断揭示,涡度正变率中心初生于青藏高原东侧低空,其后出现了高、低空涡度正变率中心的迭加和耦合以及在垂直方向的贯通过程。涡度正变率中心的这种垂直结构及其演变,与切变线低涡生成和发展的正涡度中心垂直结构及其演变基本一致。在贡献于涡度变率的因子中,非线性相互作用涡度变率的相对数值最大;由于地形强迫的时间平均涡度变率只对切变线低涡的生成和维持是重要的;扰动涡度变率在切变线低涡强烈发展时才有值得注意的贡献。中尺度热量和水汽收支诊断揭示,视热源Q_1和水汽汇Q_2垂直积分的高值区同切变线低涡发展区及暴雨区大体一致;Q_1和Q_2的时空平均垂直廓线表明,Q_1的最大加热区间在570至400 hPa,而Q_2的最大区间在650至550 hPa;由于感热和潜热对流涡动通量辐合的加热,约等于凝结释放潜热量的一半。  相似文献   

6.
应用常规观测资料和NCEP/NCAR再分析资料,对2009年2月12—13日辽宁暴雪过程的主要影响系统(850 hPa切变线)进行动力诊断并研究其演变特征。结果表明:辽宁中西部切变线东南侧、江淮气旋顶部暖锋附近对应强降雪中心;切变线与正涡度区相对应,正涡度带合并、发展并向偏东方向移动,影响切变线的加深发展和东移;850 hPa正涡度中心先于强降雪出现,具有一定预报意义;正涡度带及其中心的生成与发展的动力机制主要受总涡源的影响,涡度变率较涡度更能提前并准确地反映暴雪切变线生成、发展的物理过程;涡度垂直输送和绝对涡度的散度效应对于正变涡的贡献显著,而绝对涡度的散度效应是正涡度变率的主要强迫源;正变涡的减弱主要来自扭转项,抑制了系统的发展。  相似文献   

7.
MCC转为带状MCSs过程中水平涡度的变化与暴雨的关系   总被引:4,自引:0,他引:4  
利用实况资料和WRF中尺度数值模式对2010年6月18—19日的一次MCC转带状MCSs的暴雨过程进行数值模拟与诊断分析。结果表明:850 hPa西南涡和切变线的形成与维持是影响此次暴雨产生的中尺度系统,前期MCC的形成到成熟以低涡降水为主,后期的圆形MCC转为带状MCSs主要为切变线降水。在雨区附近,u、v的垂直切变所形成的强水平涡度造成的旋转,对应垂直环流的上升支可触发暴雨产生,垂直方向上u、v不同的分布可形成不同的垂直环流。低涡与切变线附近的水平涡度有明显差异,这种差异导致暴雨形成的原因不同,低涡暴雨主要由v的垂直切变造成,切变线暴雨主要由u、v的垂直切变共同作用,本次过程中v的垂直切变构成了沿切变线的东西向雨带,u的垂直切变沿纬向的不均匀性引起的垂直运动与切变线上MCSs的生成、发展和多雨团的形成关系密切。低涡、切变线降水中心附近的正倾侧项(水平涡度向垂直正涡度转换)也有类似的差异,低涡的转换主要由?v/?p<0决定,切变线的转换主要由-?u/?p>0决定。水平涡度向垂直涡度的转换尺度较小,易在平均状态下被忽略。倾侧项主要有利于暴雨的加强,但对西南涡、切变线的发展贡献较小。   相似文献   

8.
"98.7"突发性特大暴雨中尺度切变线低涡发展的涡源诊断   总被引:1,自引:26,他引:1  
冯伍虎  程麟生 《高原气象》2002,21(5):447-456
1998年7月20~23日(简称“98.7”)发生在武汉周边地区的特大暴雨过程与沿低涡切变线相继生成和强烈发展的MαCS及MβCS直接关联。利用MM5模拟提供的高空间分辨(20km)输出资料,对这次突发性特大暴雨中尺度切变线低涡发展的动力学机制进行了诊断。涡度分析指出,高、低空正涡度中心在武汉周边地区上空的叠加和耦合是该低涡切变线持续发展的主要物理机制之一。总涡源的诊断揭示,在突发性暴雨强烈发生发展期,武汉周边地区上空从低层到高层有一近乎垂直的涡源高值区生成和维持,其垂直结构的发展演变与涡度场垂直结构的发展演变相一致。这一结果表明,大气总涡源对该中尺度低涡切变线的生成和发展起着决定性作用,也是该暴雨中尺度系统持续发展的重要动力学机制。对贡献于总涡源的诸分量计算表明,在650hPa以下,散度项对大气总涡源的正贡献最大,但在此层以上至200hPa之间,垂直涡度平流项的贡献要比散度项大,同时水平平流项也为正贡献;在整个对流层,扭转项对总涡源为负贡献,散度项只在450~250hPa之间为负贡献。在近地层,垂直涡度平流项和水平平流项基本对总涡源不作任何贡献。时间平均涡源和纯扰动涡源对低涡切变线的生成很重要;在强烈发展期,相互作用涡源作用最大,纯扰动涡源贡献次之;随着非线性相互作用涡源贡献的减小,低涡切变线东移减弱。在该期间时间平均涡源和纯扰动涡源仍为正贡献。  相似文献   

9.
利用欧洲中心ERA-interim再分析资料,通过计算Okubo-Weiss(OW)参数,对青藏高原上一次高原切变线诱发高原低涡生成的过程进行了诊断分析。结果表明:(1)OW负值带可以指示高原切变线的可能生成区;OW值趋于0时,切变线变得不稳定,强度逐渐减弱;OW正值区能够指示高原低涡的后续移动趋势以及发展情况,气流辐合区域与OW大正值区有很好的对应关系。(2)此次高原切变线气流活动以拉伸变形为主。切变线生成阶段,其附近气流作拉伸变形运动;切变线成熟阶段,气流拉伸变形运动达到最强;切变线减弱阶段,其气流拉伸变形运动减弱。(3)切变线的生成以及移动主要受总变形方程的局地变化项影响;低涡的生成位置以及后续移动路径与水平涡度方程的散度项有很好的对应关系。气流辐合在高原低涡形成的初期起主要作用,辐合强度的减弱会抑制高原低涡的东移及发展。   相似文献   

10.
一次高原低涡与高原切变线演变过程与机理分析   总被引:6,自引:1,他引:5  
李山山  李国平 《大气科学》2017,41(4):713-726
对一次东移高原低涡减弱、高原切变线生成并在有利的环流背景下东南移,进而引发川渝强降水的高原切变线生成机制以及演变过程进行了初步分析。首先引入描写热带气旋的Okubo-Weiss(OW)参数(VOW)来定量表达低涡、切变气流中旋转和变形的相对大小,确定高原切变线的潜在生成区域和发展状况。得出在高原切变线生成阶段,500 hPa等压面上VOW值由正转负,VOW负值带可以很好地指示高原切变线的潜在生成区域。VOW负值强度与高原切变线强度有很好的相关性。高原切变线上以VOW负值中心为主,但也会存在正值中心,说明在切变线上也会有气旋性涡度。此个例高原切变线以伸缩变形为主,高原切变线沿变形场的拉伸轴分布。然后通过涡度方程和总变形方程进一步分析了高原低涡减弱、高原切变线生成的动力机制。高原低涡的减弱、消失主要受散度项的影响,时间演变分析表明系统由强气旋性涡度的高原低涡演变为强辐合性的高原切变线。总变形方程中的扭转项对高原切变线的生成贡献最大,其次为水平气压梯度项,散度项最小;当高原切变线上以拉伸变形为主时,不利于其上高原低涡的发展,切变线可能是影响低涡发展的背景流场。  相似文献   

11.
2003年春季江淮一次暴雪过程的模拟研究   总被引:24,自引:3,他引:24  
采用NCEP全球再分析资料和常规地面、高空观测资料,利用非静力中尺度数值模式MM5(V3.6)对2003年2月江淮地区暴雪过程进行了数值模拟。结果表明,MM5能够较好地模拟出地面及中低空大、中尺度环流系统,能够成功模拟出暴雪中尺度低涡的发生、发展及结构演变;低空西南急流与暴雪有着密切关系,对暴雪天气预报有很好的指导作用;对涡度场、散度场和垂直速度场的诊断表明,运动场和热力场的相互配置及耦合关系非常有利于暴雪切变线的发展及暴雪形成与维持。还利用模拟雷达反射率因子检验了模拟的正确性。对温度场的分析可知。降水性质与700hPa、850hPa温度平流有直接关系。  相似文献   

12.
基于NCEP再分析资料、常规观测站点降水数据,研究了2013年5月14-15日发生的一次西南涡诱生气旋的结构演变特征及其在湖南产生大暴雨的动力学机理,最后利用Okubo-Weiss参数(OW)及位势涡度(Potential Vorticity,PV)定量分析了西南涡切变线和诱生气旋的发展过程。结果表明:(1)此次大暴雨是一例由西南涡诱生气旋引发的强降水过程。在气旋波生成阶段,西南涡风场由对称结构变成不对称结构;在诱生气旋的成熟阶段,西南涡风场再次发展为对称结构。切变线上的不稳定为气旋性扰动的生成提供了有利环境条件,导致西南涡诱生气旋波沿切变线东移并随之产生大暴雨。(2)在气旋波生成之前,西南涡环流及西风绕流涡度带表现为OW参数和PV大值区,西南涡外围是OW参数负值环绕区,有利于切变线的生成和维持。在绕流涡度带与切变线结合之后,切变线的旋转性加强,风场的旋转性诱生出气旋性扰动。(3)诱生气旋发展的主要原因是气旋波在有利的高低空形势场配置下不断积累正位涡,OW极大值和PV极大值重合并远超停滞的西南涡。  相似文献   

13.
青藏高原切变线暴雪中尺度分析及其涡源研究   总被引:29,自引:11,他引:18  
利用天气图和T63资料分析1996年1月中旬青海牧区降雪过程,指出这场暴雪是由于北支冷空气和南支暖湿气流结合形成具有中-α尺度结构的高原切变线引发的暴雪过程,其主要触发信号是切变线高层正变涡。诊断表明,对高层正变涡起主要贡献的是平流项和扭转项,此两项正贡献都号背景场上青藏高原南北两支西风争流适当配置相互作用有关。  相似文献   

14.
冬季一次引发华北暴雪的低涡涡度分析   总被引:5,自引:0,他引:5  
利用NCEP FNL 1°×1°再分析资料和WRF模式,模拟了2010年1月2~3日我国华北地区的一次由涡旋造成的冬季降雪过程,并采用位涡和涡度方程对引发暴雪的涡旋发展机制进行了诊断分析。结果表明,这次降雪过程中,对流层中层高空浅槽东移、加深及发展,并引导低空和地面系统自西向东移动,高空位涡的下传强迫加强了对流层中低层涡旋的发展。平均通量和涡旋区域的辐合、辐散作用对涡旋涡度的增长贡献最大,扰动通量和类倾斜项的作用较小。在中层涡旋成熟期,环境场的风速小于中层涡旋的移动速度时,环境场相对于涡旋区域为辐散,涡旋涡度减小;当环境场风速大于涡旋的移动速度时,环境场相对于涡旋区域为辐合,涡旋涡度增加。在涡旋衰减期,向涡旋外输送的绝对涡度通量使得涡旋涡度逐渐减弱。这次过程中,高空位涡强迫、低空辐合和涡旋边界平均气流对扰动涡度的输送是涡旋发展的主要机制。  相似文献   

15.
青藏高原东北侧一次暴雪过程的湿位涡分析   总被引:4,自引:0,他引:4  
利用NCEP(1°×1°)全球再分析格点资料,对青藏高原东北侧2002年10月18日一次暴雪天气进行诊断分析。结果表明:500 hPa北上的西南暖湿气流与东移南压的西北冷空气在36°N附近交汇形成的高原切变线是造成这次强降水的主要天气系统。暴雪发生在700 hPa湿位涡正压项MPV1正值密集带和湿位涡斜压项MPV2负值区中。由于等eθ线变得陡立密集,大气对流不稳定能量释放,MPV2绝对值增大,大气湿斜压性增强导致下滑倾斜涡度发展是形成此次暴雪的重要原因,它对暴雪预报有着很好的指示作用。  相似文献   

16.
应用常规观测资料和NCEP/NCAR再分析资料,分析了2007年3月3—4日东北南部特大暴雪的动力机制,结果表明:850 h Pa低涡切变线附近对应着强降雪中心,其辐合抬升作用最明显,是本次过程的主要影响系统和成功预报的关键;涡度变率更能准确反映出暴雪切变线生成、发展的物理机制,且对于强降雪中心的位置和强度变化具有一定的预报意义;在涡度变率的各影响项中,700~900 h Pa正涡度区的强辐合项是正涡度倾向的主要强迫源,低层涡度增加,在强上升运动的作用下向上输送,使系统发展,从动力机制上进一步说明本次过程中主要影响系统的作用;涡度变率中绝对涡度平流项与各层高空槽移动或强度变化有关,反映了暴雪过程中各高度影响系统的垂直结构变化;而扭转项在低层一直产生负贡献,说明上升运动在水平方向的不均匀形成负涡度倾向,不利于系统的发展。  相似文献   

17.
高原低涡移出高原后持续活动的典型个例分析   总被引:1,自引:0,他引:1  
利用1°×1°NCEP/NCAR再分析资料,选取500 hPa分别为西风槽、切变线和切变流场影响背景下、移出高原后维持48 h以上的3次典型高原低涡个例,分析了低涡维持期间500 hPa环境场、主要影响系统、涡度与温度平流、200 hPa形势场及垂直动力结构,并利用涡度方程对总涡源和各强迫项进行了诊断分析,结果表明:(1)西风槽影响时高原低涡移动路径受槽前西南气流引导,切变线影响时低涡沿切变线自西向东移动,切变流场影响时低涡移动主要受西太平洋副热带高压(下称西太副高)进退的影响,当西太副高出现明显西伸时,可导致低涡折向西退,3次个例均持续有正涡度平流和冷平流向涡区输送;(2)西风槽和切变线影响时南亚高压为东西带状分布,切变流场影响时南亚高压为北拱形;(3)高原低涡东移发展达到最强时,3次个例在200hPa均有低槽或低压叠加,从而形成深厚的正涡度柱;(4)500 hPa存在正涡度变率中心,低涡沿正涡度变率中心方向移动,高空槽和切变流场影响时正涡度变率主要来自水平输送项,切变线影响时主要来自辐合辐散项。  相似文献   

18.
利用常规实测资料和T213模式输出产品,对2009年春季发生在青南高原的两次大到暴雪天气过程进行了诊断分析,结果表明:两次大到暴雪天气过程的形成分别与中尺度切变线和低涡的发展东移直接关联。相对湿度、水汽通量及水汽通量散度等物理量诊断表明,在中低层强盛的西南暖湿气流使水汽不断从孟加拉湾向青南高原输送,有利于暴雪天气形成。涡度、散度和垂直速度等动力条件物理量在中低层具有强降水特征,其空间配置极有利于切变线和低涡发展及大到暴雪形成与维持。  相似文献   

19.
利用常规观测资料、 ERA-5再分析数据、 FY-4A卫星资料,对2021年9月3-4日一次西北涡与西南涡共同作用引发的秦巴区域大暴雨过程进行了研究,探讨了两涡作用导致大暴雨的中尺度环境场特征,并对西南涡的形成过程进行诊断分析。结果表明:秦巴区域的大暴雨是在西北涡与西南涡共同作用下由中尺度对流复合体(Mesoscal Convective Complex, MCC)引起的,强降水位于MCC云顶亮温冷中心及后部偏冷空气一侧的亮温梯度大值区。西南涡生成前,西北涡后部的偏北气流与西南气流形成了中尺度切变线,在秦巴区域触发对流不稳定而激发出中尺度对流云团而产生降水;西南涡生成后与西北涡共同作用,使秦巴区域水汽的输送加强,对流层低层形成强烈辐合,正涡度和垂直上升运动加强,使MCC强烈发展并具有较长生命史,同时伴随β和γ中尺度的对流云团发展,加强了该区域的强降水,从而造成大暴雨。该过程中西南涡是由500 hPa低涡产生的正涡度和高位涡向下传递强迫,使西北涡后部偏北风与西南气流气旋性运动加强从而形成涡旋环流,西南涡与500 hPa低涡的垂直耦合使其发展为强大的涡旋系统,从而加强水汽的辐合上升运动以加...  相似文献   

20.
两次引发辽宁暴雪过程低涡的动力发展机制   总被引:1,自引:1,他引:0  
阎琦  温敏  陆井龙  李爽  田莉 《气象》2016,42(4):406-414
应用NCEP FNL分析资料,从动力学角度对2015年初辽宁地区两次低涡暴雪过程(简称"2.16"和"2.25"过程)的形成机制进行分析。结果表明:两次过程共同特点是850 hPa附近有低涡生成或加强,低涡是暴雪引发的直接原因。两次过程促使低涡生成的正涡度变率增大原因存在差异,"2.16"、"2.25"过程中对正涡度变率贡献最大的强迫项分别是散度项和涡度垂直输送项。500 hPa低涡东移,冷平流使得涡底部高空槽加深,槽前正涡度平流加强,差动涡度平流增大使得上升运动发展,导致850 hPa高度附近辐合增强是"2.16"过程正涡度变率增长、低涡生成的动力机制。强烈上升运动,对低层正涡度垂直输送,则是"2.25"过程850 hPa附近低涡形成和加强的动力机制。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号