首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
对比分析了青藏高原MODIS地表反照率产品和GLASS地表反照率产品的空间分布连续性、高质量反演结果的比例,应用青藏高原CAMP/Tibet试验期间的高精度观测数据评估了两种产品的精度,通过人工目视解译MODIS地表反射率图像并结合MODIS积雪产品分析了影响两种产品精度的原因,结果表明:1)GLASS地表反照率产品具有比MODIS地表反照率产品更好的空间分布连续性和更高的反演质量;2)绝大多数时段内两种产品都能与地面观测结果保持较好的一致性,能准确地反映地表反照率的异常变化过程;3)局地积雪是影响两种产品精度的重要因素之一;4)积雪条件下,GLASS地表反照率反演算法比MODIS地表反照率反演算法更具优势。研究结果有助于促进人们对地表反照率卫星遥感反演产品的认识,改进青藏高原地表反照率卫星遥感反演算法,提高青藏高原地表反照率卫星遥感反演结果的精度、反演质量和空间分布连续性。  相似文献   

2.
本文在利用NOAA/AVHRR数据反演得到1982~2000年青藏高原地区地表反照率时空分布的基础上,分析了地表反照率的时空变化及其与温度和降水之间的关系,得到地表反照率与温度和降水之间的统计方程,并用此方程计算了青藏高原地区地表反照率的时空分布。研究结果表明:青藏高原地区年均地表反照率的分布与高原自然地理带的分布特征大致吻合;地表反照率与温度和降水均有较好的相关性,相关性因下垫面植被类型的不同而有较大的差异,滞后1个月的温度和滞后2个月的降水的综合作用与地表反照率的相关性最好;月均地表反照率与温度和降水之间的二元曲线回归方程可以比较好的统计回归计算出青藏高原地区地表反照率的空间分布,该模型的系统偏差比较小,回归计算的效果比较好。  相似文献   

3.
应用MODIS地表反照率产品MCD43C3,结合青藏高原自然带数据、积雪覆盖率和植被指数数据,采用一元线性回归方法分析了2000~2016年青藏高原地表反照率的分布及变化特征,结果表明:1)高原地表反照率空间分布差异大,整体上东南部低、西北部高,受地形和地表覆盖影响较大。2)高原地表反照率四季的空间分布变化明显,高海拔山脉和高寒灌丛草甸是高原地表反照率年内和年际变化的敏感地区。3)高原地表反照率年变化介于0.19~0.26,一定程度上表现为“双峰单谷”型,与地表覆盖类型的季节变化密切相关。4)高原地表反照率年际变化整体呈缓慢波动减小的趋势,平均变率约为-0.4×10-3 a-1,减小的区域约占高原总面积的66%,川西 —藏东针叶林带的西南部地区减小得最快,减小速率超过1.0×10-2 a-1。5)高原地表反照率减小与冰川消融和积雪减少密切相关,高原植被覆盖改善也是一个重要因素。  相似文献   

4.
利用2006-2011年9景ASTER遥感影像计算了青藏高原珠穆朗玛峰地区的地表特征参数(地表反照率、地表温度、归一化植被指数、植被覆盖度),并对地表反照率和地表温度反演结果进行了验证。结果表明:地表反照率和地表温度的反演结果与观测值较为一致,能够作为陆面过程模式的输入数据;反演得到的植被指数能够较好的代表珠峰地区的地表植被特征;所有的反演算法和结果仅依赖于遥感数据,表明在资料缺乏地区利用卫星遥感技术是获取地表特征参数的有效手段。  相似文献   

5.
利用2000~2016年MODIS地表反照率和ECMWF/ERA-Interim再分析资料,选取有代表性的高原季风指数DPMI,统计分析了青藏高原地表反照率与高原季风之间的联系,结果表明:1)11月高原地表反照率大小与次年高原夏季风爆发存在密切关系:11月高原地表反照率偏低(高),次年4月高原夏季风爆发偏早(晚),强度偏强(弱)。2)可能的影响机制为:当前期11月高原地表反照率偏低时,后期高原主体对大气的感热加热信号更强,从而引起4月高原上空近地面层上升运动明显加强,这有利于热量向高空传输,导致对流层加热作用加强,高原上空对流层温度偏高,使得高原季风环流系统加强,最终导致高原季风季节变化相应提前;反之亦然。  相似文献   

6.
青藏高原地表特征时空分布   总被引:12,自引:3,他引:9  
通过利用地理信息数据库、卫星反演参数、气象观测数据,分析了我国青藏高原地区地表植被覆盖、地表反照率分布、地表蒸发分布、地表积雪分布.结果显示,随着青藏高原地表年平均气温的显著升高,青藏高原部分区域地表覆盖特征也发生了改变.在青藏高原南缘湿润大区降水充分地区,地表反照率相对较低,潜热蒸发量最大,1982~2000年期间地表植被覆盖呈明显增加趋势.青藏高原地区积雪覆盖在各个气候区域也呈现同步变化特征,自1970~1989期间,降雪量呈持续增加趋势,但之后至2000年期间,全区降雪量呈下降趋势,其中积雪覆盖变化最强烈的时段发生在10月~4月之间,变化幅度最大的区域位于青藏高原的东南部区域.  相似文献   

7.
吕建华  季劲钧 《大气科学》2002,26(1):111-126
在原大气-植被相互作用模式AVIM的基础上作了改进,包括对值被生理过程,如(1)光合作用:(2)呼吸;(3)分配和(4)物候等新的描述方法。对青藏高原上30个站点进行模拟计算,给出了高压上地表辐射及水热物理通量以及地表拖曳系数和地面反照率的分布特征。模拟结果表明净辐射和感热通量由东南和西北增加,高原西北部地表反照率较高,东南部地表反照率较低。  相似文献   

8.
应用MODIS数据反演青藏高原地区地表反照率   总被引:5,自引:1,他引:4  
应用RossThick-LiTransit核驱动BRDF(bidirectional reflectance distribution function)模型,选择2004年Terra MODIS(moderate resolution imaging spectraradiometer)500 m分辨率数据,对青藏高原地区的地表反照率进行了反演研究,并以平均气溶胶光学厚度值0.11计算了正午时(北京时间12:00)实际的地表反照率,反演结果与当地的地表覆盖类型和地形具有较好的一致性。此外,藏北高原4个辐射观测站点观测资料与反演结果的比较表明,500 m分辨率反演结果不仅可以满足气候和陆面过程模式的精度要求,而且精度高于美国1 km分辨率反照率反演结果。  相似文献   

9.
徐兴奎 《大气科学》2002,26(3):394-400,T001
应用NOAA-AVHRR气象卫星数据,通过近似的大气校正模型及双向反射模型,结合地理信息系统,建立了动态的反照率反演模型,并反演了计算我国长江三角洲地区1995年3-12月的地表反照率。通过对诸影响反照率变化因子的分析显示,遥感反演结果与地表覆盖特征及气候特征基本相符。  相似文献   

10.
陈爱军  王飞  卞林根  刘玉洁 《高原气象》2012,31(6):1479-1487
采用对照反演比法对比分析了青藏高原地区相同时空条件下的MODIS反照率当量反演结果和全反演结果的差异。利用2002—2004年青藏高原地区Terra MODIS数据开展的对照反演试验表明:(1)黑空反射率BSA两种反演结果的绝对偏差小于0.03,白空反射率WSA两种反演结果的绝对偏差约为0.04;BSA两种反演结果绝对偏差的标准差约为0.05,而WSA的则更大。(2)BSA两种反演结果和WSA两种反演结果的绝对偏差及其标准差均存在一定的年际差异。(3)可见光区反照率两种反演结果的绝对偏差及其标准差一般大于红外光区两种反演结果的绝对偏差及其标准差。(4)两种地表反照率反演结果的绝对偏差及其标准差在青藏高原地区三种主要地表类型的差异不大。  相似文献   

11.
中国地表月平均反照率的遥感反演   总被引:20,自引:0,他引:20  
徐兴奎  刘素红 《气象学报》2002,60(2):215-220
地表特征和下垫面物理性质在时空分布上的差异 ,造成地表能量分布的不均 ,地球表面的半球反射在气候领域是一个非常重要的参数 ,它在地 气能量交换中决定着能量在地 气之间的分配比率。反照率随地表覆盖类型的变化具有很大的差异 ,而这往往是形成区域小气候差异的原因。文中通过统计和双向反射模型 ,应用NOAA14 AVHRR数据并结合地理信息系统 ,反演计算了 1997年中国月平均反照率的分布 ,并对结果做了分析检验。  相似文献   

12.
夏露  张强  岳平  刘君圣 《气象科学》2017,37(3):339-347
本文利用兰州大学半干旱气候与环境观测站(SACOL站)2006—2012年陆面过程观测资料以及榆中站气象资料,分析了陆面各辐射收支分量对于气候波动的响应,并且研究了地表反照率年际波动变化,讨论了各陆面过程参数对于黄土高原气候背景年际波动的反馈。并且根据黄土高原降水类型将全年分为冬夏半年讨论,以得到更为显著的年际变化特征和相关关系。结果显示,2006—2012年气温降水的趋势与近年来黄土高原暖干化总趋势相吻合。地表浅层土壤湿度和温度都与气温、降水呈现很好的响应。气候因素的综合影响是地表反照率变化波动的原因。通过冬夏半年资料区分探究得到,长波辐射分量与气候要素的相关较短波辐射分量与气候要素的相关性更强。但总体而言,陆面过程对于该地区气候背景波动的响应机制是较为复杂的。  相似文献   

13.
A dampened land use change climate response towards the tropics   总被引:1,自引:1,他引:0  
In climate simulations we find a pronounced meridional (equator to pole) gradient of climate response to land cover change. Climate response approaches zero in the tropics, and increases towards the poles. The meridional gradient in climate response to land cover change results from damping feedbacks in the tropics, rather than from polar amplification. The main cause for the damping in the tropics is the decrease in cloud cover after deforestation, resulting in increased incoming radiation at the surface and a lower planetary albedo, both counteracting the increase in surface albedo with deforestation. In our simulations, deforestation was also associated with a decrease in sensible heat flux but not a clear signal in evaporation. Meridional differences in climate response have implications for attribution of observed climate change, as well as for climate change mitigation strategies.  相似文献   

14.
长江三角洲地区地表月平均反照率的卫星遥感研究   总被引:6,自引:3,他引:6       下载免费PDF全文
徐兴奎 《大气科学》2002,26(3):394-400
应用NOAA-AVHRR气象卫星数据,通过近似的大气校正模型及双向反射模型,结合地理信息系统,建立了动态的反照率反演模型,并反演计算了我国长江三角洲地区1995年3~12月的地表反照率.通过对诸多影响反照率变化因子的分析显示,遥感反演结果与地表覆盖特征及气候特征基本相符.  相似文献   

15.
The aim of this study was to develop an advanced parameterization of the snow-free land surface albedo for climate modelling describing the temporal variation of surface albedo as a function of vegetation phenology on a monthly time scale. To estimate the effect of vegetation phenology on snow-free land surface albedo, remotely sensed data products from the Moderate-Resolution Imaging Spectroradiometer (MODIS) on board the NASA Terra platform measured during 2001 to 2004 are used. The snow-free surface albedo variability is determined by the optical contrast between the vegetation canopy and the underlying soil surface. The MODIS products of the white-sky albedo for total shortwave broad bands and the fraction of absorbed photosynthetically active radiation (FPAR) are analysed to separate the vegetation canopy albedo from the underlying soil albedo. Global maps of pure soil albedo and pure vegetation albedo are derived on a 0.5° regular latitude/longitude grid, re-sampling the high-resolution information from remote sensing-measured pixel level to the model grid scale and filling up gaps from the satellite data. These global maps show that in the northern and mid-latitudes soils are mostly darker than vegetation, whereas in the lower latitudes, especially in semi-deserts, soil albedo is mostly higher than vegetation albedo. The separated soil and vegetation albedo can be applied to compute the annual surface albedo cycle from monthly varying leaf area index. This parameterization is especially designed for the land surface scheme of the regional climate model REMO and the global climate model ECHAM5, but can easily be integrated into the land surface schemes of other regional and global climate models.  相似文献   

16.
To build land surface dataset for climate model,with application of remote sensing technique as well as the Geographic Information System(GIS),the data of surface type,roughness and albedo over China in 1997 were retrieved,resolutions being 10 km×10 km.Based on these data,an analysis is conducted on the geographic distributions and seasonal variations of surface vegetation cover and roughness as well as albedo over China.Results show that surface vegetation cover is mainly located to the south of Yangtze River,in Southwest and Northeast China andsparse vegetation cover is in the Northwest.The variation of land surface cover affects the variations of land surface roughness and albedo.High albedo occurred in the north of Xinjiang Autonomous Region,the north of Northeast China and the Qinghai-Xizang Plateau in winter,in correspondence with the location of snow cover.For most part of China,surface roughness decreases and albedo increases in winter,while the roughness increases and the albedo decreases in summer,which could mainly result from land surface cover(snow cover and vegetation cover)and soil moisture changes.This shows that the geographic distribution and seasonal variation of the albedo are almost opposite to those of the roughness,in agreement with theoretical results.Temporally,the amplitude of surface roughness change is quite small in comparison with the roughness itself.  相似文献   

17.
Transient experiments for the Eemian (128–113 ky BP) were performed with a complex, coupled earth system model, including atmosphere, ocean, terrestrial biosphere and marine biogeochemistry. In order to investigate the effect of land surface parameters (background albedo, vegetation and tree fraction and roughness length) on the simulated changes during the Eemian, simulations with interactive coupling between climate and vegetation were compared with additional experiments in which these feedbacks were suppressed. The experiments show that the influence of land surface on climate is mainly caused by changes in the albedo. For the northern hemisphere high latitudes, land surface albedo is changed partially due to the direct albedo effect of the conversion of grasses into forest, but the indirect effect of forests on snow albedo appears to be the major factor influencing the total absorption of solar radiation. The Western Sahara region experiences large changes in land surface albedo due to the appearance of vegetation between 128 and 120 ky BP. These local land surface albedo changes can be as much as 20%, thereby affecting the local as well as the global energy balance. On a global scale, latent heat loss over land increases more than 10% for 126 ky BP compared to present-day.  相似文献   

18.
Influence of modern land cover on the climate of the United States   总被引:2,自引:0,他引:2  
I have used a high-resolution nested climate modeling system to test the sensitivity of regional and local climate to the modern non-urban land cover distribution of the continental United States. The dominant climate response is cooling of surface air temperatures, particularly during the warm-season. Areas of statistically significant cooling include areas of the Great Plains where crop/mixed farming has replaced short grass, areas of the Midwest and southern Texas where crop/mixed farming has replaced interrupted forest, and areas of the western United States containing irrigated crops. This statistically significant warm-season cooling is driven by changes in both surface moisture balance and surface albedo, with changes in surface moisture balance dominating in the Great Plains and western United States, changes in surface albedo dominating in the Midwest, and both effects contributing to warm-season cooling over southern Texas. The simulated changes in surface moisture and energy fluxes also influence the warm-season atmospheric dynamics, creating greater moisture availability in the lower atmosphere and enhanced uplift aloft, consistent with the enhanced warm-season precipitation seen in the simulation with modern land cover. The local and regional climate response is of a similar magnitude to that projected for future greenhouse gas concentrations, suggesting that the climatic effects of land cover change should be carefully considered when crafting policies for regulating land use and for managing anthropogenic forcing of the climate system.  相似文献   

19.
The effects of terrestrial ecosystems on the climate system have received most attention in the tropics, where extensive deforestation and burning has altered atmospheric chemistry and land surface climatology. In this paper we examine the biophysical and biogeochemical effects of boreal forest and tundra ecosystems on atmospheric processes. Boreal forests and tundra have an important role in the global budgets of atmospheric CO2 and CH4. However, these biogeochemical interactions are climatically important only at long temporal scales, when terrestrial vegetation undergoes large geographic redistribution in response to climate change. In contrast, by masking the high albedo of snow and through the partitioning of net radiation into sensible and latent heat, boreal forests have a significant impact on the seasonal and annual climatology of much of the Northern Hemisphere. Experiments with the LSX land surface model and the GENESIS climate model show that the boreal forest decreases land surface albedo in the winter, warms surface air temperatures at all times of the year, and increases latent heat flux and atmospheric moisture at all times of the year compared to simulations in which the boreal forest is replaced with bare ground or tundra. These effects are greatest in arctic and sub-arctic regions, but extend to the tropics. This paper shows that land-atmosphere interactions are especially important in arctic and sub-arctic regions, resulting in a coupled system in which the geographic distribution of vegetation affects climate and vice versa. This coupling is most important over long time periods, when changes in the abundance and distribution of boreal forest and tundra ecosystems in response to climatic change influence climate through their carbon storage, albedo, and hydrologic feedbacks.  相似文献   

20.
Managing the land surface to increase albedo to offset regional warming has received less attention than managing the land surface to sequester carbon. We test whether increasing agricultural albedo can cool regional climate. We first used the Community Atmosphere Model (CAM 3.0) coupled to the Community Land Model (CLM 3.0) to assess the broad climatic effects of a hypothetical implementation of a strategy in which the albedo of cropland regions is increased using high albedo crops. Simulations indicate that planting brighter crops can decrease summertime maximum daily 2 m air temperature by 0.25°C per 0.01 increase in surface albedo at high latitudes (>30°). However, planting brighter crops at low latitudes (<30°) may have negative repercussions including warming the land surface and decreasing precipitation, because increasing the land surface albedo tends to preferentially decrease latent heat fluxes to the atmosphere, which decreases cloud cover and rainfall. We then test a possible method for increasing crop albedo by measuring the range of albedo within 16 isolines of soybeans that differ only with trichome color, orientation, and density but find that such modifications had only minor impacts on leaf albedo. Increasing agricultural albedo may cool high latitude regional climate, but increasing plant albedo sufficiently to offset potential future warming will require larger changes to plant albedo than are currently available.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号