首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
利用黄土高原半干旱区"定西陆面过程综合观测试验站"2004年11月至2005年10月的各种陆面物理量综合资料,比较系统地研究了黄土高原半干旱区土壤温度、降水量、地表反照率、地表辐射分量和能量平衡分量的年变化和日变化特征及其影响机制。结果显示,黄土高原陆面过程特征与其他地区有很大不同。土壤温度变化向下传播速度约为2.5~3.5 h/10cm;地表反照率随土壤湿度的增大而减小,两者的相关系数达到了0.5338;而地表反照率随降雪量增大而增大,与降雪量的相关系数为0.6645;长波辐射年最大值出现的时间比总辐射迟1个月左右,年平均日变化中地表和大气对太阳辐射加热大约需要1个小时的响应时间;潜热通量夏季是冬季的5倍多,感热通量有了两个比较明显的峰值,潜热通量、感热通量和土壤热通量的日峰值比净辐射滞后30 min~1 h。  相似文献   

2.
河西走廊中部干旱区陆面水分和辐射特征研究   总被引:2,自引:1,他引:1       下载免费PDF全文
孙昭萱  张强 《高原气象》2010,29(6):1423-1430
利用河西张掖试验站2005年11月—2006年10月的陆面过程观测资料,研究了河西中部干旱区土壤温度、土壤湿度、降水量、地表反照率、地表辐射分量和土壤热通量等物理量的年变化和日变化特征及其影响机制,分析了土壤湿度与降水量的相关关系、地表反照率与降水量及土壤湿度的相关关系。结果表明:干旱荒漠地区土壤温度对太阳加热的响应比较迅速,而且年较差和日较差也比较大。地表层土壤主要受蒸发和降水的影响,土壤湿度变化响应得较快,而深层土壤湿度基本不受地表影响,在冬季土壤湿度变化对降水的响应要滞后1~2个月。降水量与5 cm土壤湿度的相关最好,与深层50cm的土壤湿度相关最差。地表反照率的起伏变化与降水过程对应的比较好,反照率的谷值正好对应降水过程比较集中的时段。地表反照率随土壤湿度的增大是减小的,两者的相关系数达到了0.7346。干旱荒漠区辐射分量年变化幅度普遍比较大,年平均日变化特征表现为非常典型而平滑的日循环形态。土壤冬季向大气输出热量而夏季转变为大气向土壤输入热量,且输入的热量要大于输出。随着季节变化,土壤热通量的日最大值冬季出现最晚、夏季最早,与20 cm土壤温度的变化趋势基本一致。  相似文献   

3.
黄土高原陇东地区有着特殊的气候背景和下垫面,对这一地区陆气相互作用特征和影响因素的观测分析对改进和发展陆面过程模式以及气候变化研究有重要意义。利用陇东平凉陆面过程与灾害天气观测研究站连续一年的陆面过程观测资料,分析了雨养农田降水量、土壤含水量、辐射、反照率和能量通量的季节变化,以及降水、土壤含水量和农业生产活动对能量分配的影响。结果表明,陇东地区降水量季节分布不均,土壤含水量有明显季节差异,随降水有明显波动;辐射通量的季节变化较为规律,短波辐射的日均值受天气状况影响,波动较大;地表反照率呈明显的季节变化,全年正午反照率最大值为0.83,出现在降雪后,生长季随着作物的生长,反照率下降至0.2以下,农作物收割以后的裸土反照率随降水变化明显,反照率与土壤体积含水量呈明显的线性相关关系;湍流能量通量日循环和季节变化明显,地表能量分配在很大程度上受降水影响,同时农业生产活动也对其有较大影响,主导能量通量有较大的月际波动,潜热通量月平均日变化峰值最大为240.8 W·m~(-2),出现在5月,感热通量为192.5 W·m~(-2),出现在4月;在年尺度上,正午净辐射多被感热通量消耗,感热通量约占35%,潜热通量约占32%,低于灌溉农田;在冬小麦快速生长季(3-5月),潜热通量约占34%,远低于灌溉的冬小麦田,研究站点的蒸散发过程受到水分限制。  相似文献   

4.
利用1960—2009年咸宁市3个地面气象站气象资料,统计分析近50 a来该区域气温、降水等主要气候要素的年变化、四季变化及年代际变化的趋势特征。结果表明:近50 a研究区气温有上升趋势,气候倾向率为0.23℃/10 a,年平均气温在20世纪90年代末发生突变。春秋季平均气温分别在2002年和1999年发生突变,夏季平均气温在2006年发生突变,冬季平均气温在1990年发生突变。春季与秋季平均气温的变化较一致,冬季平均气温对全球变暖响应最敏感,春季与秋季对气候变暖的响应较敏感,而夏季对气候变暖的响应最为迟缓。近50 a咸宁市年降水量呈波动但无明显增降的趋势,其中春夏两季变化趋势较为一致并有下降的趋势,且春夏降水量的变化主导着年降水量的变化;而冬季降水量有上升的趋势。通过对气温与降水变化趋势的比较,发现冬季对气候变化的响应最显著,其余季节无明显相关性。  相似文献   

5.
1960-2009年咸宁市气候变化特征分析   总被引:1,自引:0,他引:1       下载免费PDF全文
利用1960-2009年咸宁市3个地面气象站气象资料,统计分析近50 a来该区域气温、降水等主要气候要素的年变化、四季变化及年代际变化的趋势特征。结果表明:近50 a研究区气温有上升趋势,气候倾向率为0.23℃/10a,年平均气温在20世纪90年代末发生突变。春秋季平均气温分别在2002年和1999年发生突变,夏季平均气温在2006年发生突变,冬季平均气温早在1990年发生突变。春季与秋季平均气温的变化比较一致,冬季平均气温对全球变暖响应最敏感,春秋与秋季对气候变暖的响应是比较敏感,而夏季对气候变暖的响应最为迟缓。近50 a年降水量呈波动但无明显增降的趋势,其中春夏两季变化趋势较为一致并有下降的趋势,且春夏降水量的变化主导着年降水量的变化;而冬季降水量有上升的趋势。通过对气温与降水变化趋势的比较,发现冬季对气候变化的响应最显著、其余季节无明显相关性。  相似文献   

6.
中国区域陆面覆盖变化的气候效应模拟研究   总被引:3,自引:0,他引:3  
基于MODIS和CLCV陆面覆盖资料,利用区域气候模式RegCM4分别进行两组24年(1978-2001年)的数值模拟试验,研究中国区域陆面覆盖变化对区域气候的影响。结果表明,以荒漠化和植被退化为主要特征的陆面覆盖变化通过改变陆面能量、水分平衡与大尺度环流进而对气候要素产生重要影响。夏季,中国南方地区普遍降温,季风边缘区及藏北高原气温升高,降水减少;季风边缘区与西北地区气温年际波动加剧;内蒙古中东部地区西南风增强,进而水汽输送增强,一定程度上增加了该地区降水。冬季,中国东部地区偏北气流增强,更多干燥冷空气南下,使得黄河以南地区降水减少、气温降低。  相似文献   

7.
20世纪60~90年代辽东地区气候年代际变化特征分析   总被引:11,自引:6,他引:5       下载免费PDF全文
利用1961~2000年辽东地区13个观测台站的逐月降水和气温资料,分析了辽东地区降水和气温的年代际变化。并利用高桥公式计算出辽东地区的蒸发量,得出了该地区蒸发量和降水蒸发差的年代际变化特征;同时利用干燥度指标研究了辽东地区气候干旱对气候变暖的响应。结果表明:近40 a来辽东地区气候变化呈暖干变化趋势,即气温升高、降水减少,尤其以20世纪90年代变化最为明显。  相似文献   

8.
黄土高原秋季气候对全球增暖的暖干化区域响应   总被引:2,自引:1,他引:1  
王毅荣 《高原气象》2008,27(1):104-112
利用69年(1937—2005年)的实测气候要素资料和各种统计方法,研究了黄土高原秋季气候对全球增暖的暖干化区域响应,结果表明:黄土高原秋季暖干化在四季中最为突出,降水(降水量、降水次数、连续性降水时量等)趋于减少、气温(平均、日最高、最低、季极端最高气温等)升高、蒸发量加大,暖干趋势明显;总低云量趋于减少、日照增多、地温上升等促进暖干发展。黄土高原秋季暖干化区域响应中全区一致性是其最主要的特征,高原中西部响应最敏感;在近70年中降水量演变出现2次明显转折,气温出现2次突变;降水异常与西太平洋副热带高压的夏季(JJA)东西位置、北太平洋海温异常联系紧密;年代际演变中降水量存在20~30年周期,气温周期不<70年;预测未来20年内秋季气候将以暖湿为主。  相似文献   

9.
环青海湖地区气候变化及其对湖泊水位的影响   总被引:35,自引:3,他引:32  
分析青海湖地区1961~2000年气象观测资料得出:年和四季的气温、地表蒸发以及年和夏季、冬季降水变化的气候倾向率均为正值;而春季、秋季降水变化的气候倾向率为负值。气温升高、地表蒸发加大的趋势比较显著,而降水增多的趋势不显著且年代际变化比较大,气温、地表蒸发等气象要素有向暖干化过渡的趋势,这种暖干化趋势是造成青海湖水位下降的主要原因之一。  相似文献   

10.
青藏高原与中国其他地区气候突变时间的比较   总被引:25,自引:5,他引:20  
丁一汇  张莉 《大气科学》2008,32(4):794-805
基于1961~2006年中国地面观测气温和降水资料,对青藏高原地区以及中国其他6个地区地表气温、降水的变化趋势和突变时间进行了检测和比较。结果发现,(1)地表气温:1961~2006年青藏高原地区年和四季的地表气温都呈增加趋势。年平均地表气温在20世纪80年代中期开始变暖,但显著快速增暖的突变发生在90年代中期,该时间比东北、华北、西北和淮河地区晚,与长江中下游和华南地区接近,不同季节青藏高原地区与其他地区变暖突变时间的差别也各有不同,但所有季节快速变暖突变的时间都比东北地区晚,中国东部陆地地区年和冬季平均地表气温表现出北早南晚的经向差异;(2)降水:1961~2006年青藏高原地区年降水量没有检测到显著的变化趋势,冬春降水量显著增加,而夏季降水有微弱的减少,秋季降水显著减少。降水突变的信号明显比温度突变的信号弱,年降水量和春季降水都没有检测到突变的发生,降水突变方向(增或减)和突变时间在区域与区域之间以及不同季节之间都存在较大差异。由上可见,青藏高原气候的显著快速变化比中国东部长江以北地区有明显的滞后现象,尤其是冬春温度变化,这可能是由于青藏高原地区积雪增加导致的反照率增加和冰川融化吸热对青藏高原变暖的减弱作用所致。  相似文献   

11.
本文研制建立了一个预测青海省夏季降水的动力—统计相结合的组合降尺度预测方法(Hybrid Statistical Downscaling Prediction,HSDP),该方法综合利用了气候模式Climate Forecast System 2.0版本(CFSv2)实时预测的高可预报性环流信息及前期观测的与青海夏季降水具有高相关性的气候因子,采用年际增量方法,基于气候变量的年际增量规律建立统计模型,从而实现对青海夏季降水进行动力—统计相结合的气候预测。根据全球气候因子的年际增量与青海省夏季降水年际增量的相关系数,以及CFSv2预测产品对实况模拟能力的评估,选取以下关键区气候变量的年际增量作为预测因子:(1) CFSv2模式预测当年夏季包含贝加尔湖脊、乌拉尔山脊和新疆脊区域的500 hPa高度场;(2) CFSv2模式预测青藏高原以西200 hPa纬向风场;(3)观测资料中前1 a秋、冬季热带太平洋地区海表面温度场;(4)观测资料中前1 a秋、冬季西伯利亚地区的海平面气压场,对青海省夏季降水进行统计降尺度预测。统计降尺度模型利用1983—2011年进行建模,回报2012—2018年夏季青海省降水的空间分布和时间变化,并对该模型对1983—2011年的夏季青海省降水的回报能力进行了交叉检验。回报结果表明该统计降尺度模型对CFSv2的青海省夏季降水预测能力有显著的提高,能够很好地再现青海省夏季降水西北部的高原地区偏少,而在东南部偏多的特点。该模型预测所得2012—2018年夏季青海省降水的时间变化也与实况有着较高的相关系数(0.76),对于降水显著偏少的年份(如2015年)和显著偏多的年份(如2012、2018年)的降水预测都有很好的表现。对于建模时段的交叉检验结果(相关系数为0.46,比模型回报结果与实况的相关系数0.48略低)表明,该模型具有较高的稳定性和可靠性。  相似文献   

12.
The climate and hydrology of the Western Himalayas is complex and a function of snow and glacier melt, land use, topography, and Indian summer and winter monsoon dynamics. Improving our knowledge about these processes is important from societal and agricultural points of view. In this study, an observational analysis is carried out to assess the changing climatic trends and the associated interannual variability in winter temperature and precipitation at three glacierized regions of Western Himalayas having distinctly different sub-regional characteristics. In situ observations of 23 years (1985–2007) are used. These observations are passed through rigorous statistical quality control checks. Results show higher interannual variability with increasing temperature trends in the glacierized regions of the Siachen (Karakoram Range) and Chotasigri (Great Himalayan Range). Karakoram Range has higher warming trends than the Great Himalayan Range. In case of precipitation, an overall decrease in precipitation is observed with contrasting trends in the last decade. Nino3.4 index is positively correlated with winter precipitation with similar interannual variability. In addition, at Siachen temperature and precipitation show strong negative correlation, and precipitation to spell length correlation is opposite at Siachen and Chotasigri.  相似文献   

13.
基于1961~2017年青藏高原腹地雅鲁藏布江河谷地区4个站(拉萨、日喀则、泽当和江孜)夏季(6~8月)月平均气温、降水和相对湿度等观测资料,分析了该地区夏季气候年际和年代际演变特征,并探讨了气温、降水和相对湿度在年际和年代际时间尺度上的相互关系以及与总云量和地面水汽压的联系。结果表明:(1)1961~2017年该地区夏季气候出现了暖干化趋势。气温(相对湿度)显著升高(下降),降水趋势变化不明显;本世纪初气温(相对湿度)均发生了显著的突变。(2)该地区夏季气候因子间在年际和年代际时间尺度上存在密切关系:气温与相对湿度和降水均存在明显的负相关,降水与相对湿度为正相关。(3)该地区夏季气候因子间的年际和年代际变化与同期总云量和地面水汽变化有关。1961~2017年总云量持续减少是气温显著升高的主要原因之一,气温的显著升高和降水变化不明显又造成了相对湿度的显著下降。  相似文献   

14.
With global concern on climate change impacts, developing countries are given special attention due their susceptibility. In this paper, change and variability in climate, land use and farmers' perception, adaptation and response to change are examined in Danangou watershed in the Chinese Loess Plateau. The first focus is to look at how climate data recorded at meteorological stations recently have evolved, and how farmers perceived these changes. Further, we want to see how the farmers respond and adapt to climate variability and what the resulting impact on land use is. Finally, other factors causing change in land use are considered. Local precipitation and temperature instrumental data and interview data from farmers were used. The instrumental data shows that the climate is getting warmer and drier, the latter despite large interannual variability. The trend is seen on the local and regional level. Farmers' perception of climatic variability corresponds well with the data record. During the last 20 years, the farmers have become less dependent on agriculture by adopting a more diversified livelihood. This adaptation makes them less vulnerable to climate variability. It was found that government policies and reforms had a stronger influence on land use than climate variability. Small-scale farmers should therefore be considered as adaptive to changing situations, planned and non-consciously planned.  相似文献   

15.
利用GLDAS资料分析了1948~2010年黄土高原半干旱区气温、降水和土壤湿度的变化趋势,并重点讨论了气温和降水对土壤湿度的影响和相对贡献。结果表明:近60 a来黄土高原半干旱区整体呈现暖干化趋势,增温速率明显高于全球平均增温速率;不同深度的土壤湿度的长期变化均呈减小趋势,且年际间变化明显。不同深度的土壤湿度和气温呈负相关关系,并随着土壤加深,两者的相关性加强;土壤湿度和降水则呈正相关关系,相关关系最大出现在表层土壤。通过分析气温和降水在不同季节对土壤湿度的相对贡献发现,春季和冬季气温对土壤湿度的相对贡献较降水显著,秋季恰好相反,夏季气温和降水对土壤湿度的相对贡献大小相当。对比不同深度层降水、气温对土壤湿度的相对贡献得出,降水对浅层土壤湿度有显著作用,而气温对深层土壤湿度的作用更明显。  相似文献   

16.
青藏高原及邻近地区的气候特征   总被引:21,自引:5,他引:16  
利用中国710个站(青藏高原72个站)的气温和降水资料,分析了青藏高原的气候特征及与中国区域气候异常的联系。结果表明:中国多雨日区域随季节分布大致可以分为华南区、华南一青藏高原东南部区、青藏高原区以及华西区共5个区域,多雨日区自东向西移动。青藏高原东南地区降水特征呈双峰型,西北呈单峰型;西南部存在明显的“高原梅雨”、伏旱和秋雨。林芝地区的遥相关分析表明:冬季温度与青藏高原同期温度为正相关,与我国其它大部分地方为负相关;夏季降水与青藏高原南部和长江中下游地区同期降水为正相关,与高原北部同期降水呈反相关关系;冬季温度与黄河到长江流域之间区域夏季降水呈反相关关系。  相似文献   

17.
青藏高原气候独特,影响高原夏季降水的原因是十分复杂的和多方面的。文中利用1982—2001年的卫星遥感植被归一化指数(NDVI)资料和青藏高原55个实测台站降水资料,应用经验正交分解(EOF)、奇异值分解(SVD)等方法分析了青藏高原冬、春植被变化特征及其与高原夏季降水的联系,得到以下几点初步认识:青藏高原冬、春季植被分布基本呈现东南地区植被覆盖较好,逐渐向西北地区减少的特征。其中高原东南部地区和高原南侧边界地区NDVI值最大,而西北地区和北侧边界地区NDVI较小。EOF分析表明,20年来冬、春季高原植被的变化趋势是总体呈阶段性增加,其中尤以高原北部、西北部(昆仑山、阿尔金山和祁连山沿线)和南部的雅鲁藏布江流域植被增加明显。由SVD方法得到的高原前期NDVI与后期降水的相关性是较稳定的。青藏高原多数区域冬、春植被与夏季降水存在较好的正相关,且这种滞后相关存在明显的区域差异。高原南部和北部区域的NDVI在冬春两季都与夏季降水有明显的正相关,即冬春季植被对夏季降水的影响较显著。而冬季高原中东部玉树地区附近区域的NDVI与夏季降水也存在较明显的负相关,即冬季中东部区域的植被变化对夏季降水的影响也较显著。由此可见,高原前期NDVI的变化特征,可以作为高原降水长期预报综合考虑的一个重要参考因子。  相似文献   

18.
地表反照率表征地球表面对太阳辐射的反射能力,是影响地表辐射能量收支平衡的关键参数。本文以淮河流域为例,利用MODIS(MODerate resolution Imaging Spectroradiometer)数据,采用网格趋势分析、异常变化分析、相关分析和灰色关联度分析等方法,分析了淮河流域2005~2015年地表反照率的时空变化规律,以及土地利用类型、地形因子、地表参数和气候等影响因子。结果表明:淮河流域年平均地表反照率整体呈“北高南低、东高西低”的空间分布规律,变化在0.043~0.223,平均值为 0.145。低值区主要集中于水体密集和山区丘陵地带,且标准差相对较小;高值区主要集中于流域中部及东部平原地带,且标准差较大。61.5%的区域地表反照率呈增加趋势,且存在季节性差异,夏季平均地表反照率最大,春季次之,秋季最小,冬季则由于降雪覆盖和农田利用的影响波动幅度较大。淮河流域地表反照率与归一化植被指数(Normalized Difference Vegetation Index,NDVI)、地表温度、气温和降水在大部分区域呈正相关,面积占比分别达到90.23%、82.32%、85.41%和93.70%。灰色关联度分析表明,不同土地利用类型(水体除外)下年均地表反照率受各因子影响排序为:NDVI>气温>地表温度>降水,空间变化受各因子影响排序为:NDVI>降水>地表温度>气温>高程。  相似文献   

19.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号