首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 29 毫秒
1.
华北平原是我国主要农作物产区,田间秸秆焚烧现象普遍存在,选取秋收季节(2014年10月)分析了秸秆燃烧的排放特征,利用区域化学传输模型WRF-Chem模拟研究了燃烧排放对气态前体物及其氧化产物的影响,以及最终导致的PM2.5中硫酸盐、硝酸盐和铵盐的变化。研究表明:2014年秋收季节,河南和山东等省份的秸秆燃烧排放会在东南风的输送作用下影响京津冀地区;秸秆燃烧排放大量挥发性有机物(VOCs),导致火点源及周边地区大气中主要氧化剂浓度上升,提升了区域大气氧化能力;当携带大量VOCs的秸秆燃烧烟羽与以化石燃料排放为主的城市气团相混合时,大气氧化性增强会加速城市地区人为源排放的NOx和SO2等气态前体物的氧化过程,提高硫酸盐和硝酸盐的形成速率、促进二次无机气溶胶的生成。  相似文献   

2.
A multifunctional HTDMA system with a robust temperature control   总被引:3,自引:0,他引:3  
The hygroscopicity of atmospheric aerosols significantly influences their size distribution, cloud condensation nuclei ability, atmospheric residence time, and climate forcing. In order to investigate the hygroscopic behavior of aerosol particles and serious haze in China, a Hygroscopic Tandem Differential Mobility Analyzers (HTDMA) system was designed and constructed at Fudan University. It can function as a scanning mobility particle sizing system to measure particle size distribution in the range of 20--1000 nm in diameter, as well as a hygroscopicity analyzer for aerosol particles with diameters between 20--400 nm in the range of 20%--90% RH (relative humidity). It can also measure the effect of uptake of inorganic acids or semi-VOCs on the hygroscopic behavior of aerosols, such as typical inorganic salts in atmospheric dust or their mixtures. The performance tests show that the system measured particle size of the standard polystyrene latex spheres (PSLs) is 197 nm, which is in excellent agreement with the certified diameter D=199±6 nm, as well as a standard deviation of the repeated runs SD=8.9x10-4. In addition, the measured hygroscopic growth factors of the model compounds, (NH4)2SO4 and NaNO3, agree with the Kohler theoretical curves. The results indicate that the HTDMA system is an excellent and powerful tool for studying the hygroscopic behavior of submicron aerosols and meets the demand required for laboratory research and fieldwork on atmospheric aerosols in China.  相似文献   

3.
北方局地夏末气溶胶光学特性综合观测分析   总被引:4,自引:1,他引:4  
李放  刘锦丽  吕达仁 《大气科学》1995,19(2):235-242
本文对中国北方相近地理经度不同纬度的三个试验点(内蒙草原生态定位站、北京、新乡)夏末季节大气气溶胶特性进行了地面粒子计数和整层光学遥感等综合观测。分析结果表明,这三个试验点地面和整层气溶胶数浓度通常有内蒙较小,北京居中,新乡最大的特征。文中提出了浓度比这个参量,它可以定量描述地面源气溶胶对整层大气气溶胶的相对贡献。据此分析可知内蒙地面源较弱,与该地区人类活动稀少相对应。由浓度比推测,新乡除近地面城市空气污染较严重外,滨临的黄河河面水汽蒸发作用也是促成气溶胶浓度增大的原因。  相似文献   

4.
This study explores the influence of air gaseous pollutants–aerosols and solar zenith angle (SZA) on the spectral diffuse-to-direct beam E /E irradiances ratio. It does so using ground-based spectroradiometric measurements taken over the Athens atmosphere during May 1995. It was found that the spectral E /E ratio decreases rapidly with increasing wavelength and regression curves of the form E /E  = aλ?b fitted the experimental data. These curves are strongly modified by aerosols–air pollutants, aerosol optical properties, and SZA. The log–log plot of E /E versus λ reveals a significant departure from linearity, which is likely to be associated with aerosol physical properties and SZA effects. The effect of atmospheric turbidity, as expressed through the aerosol optical at 500 nm and SZA on the spectral E /E ratio, is investigated in detail for two discernible atmospheric conditions observed in the urban Athens atmosphere. The first case includes different atmospheric turbidity levels under the same SZA, while the second corresponds to different SZA values under the same turbidity levels. It was found that the correlation between E /E and spectral aerosol optical depth can be a useful tool in determining the aerosol optical properties and aerosol types composition.  相似文献   

5.
黄山地区气溶胶吸湿增长特性数值模拟研究   总被引:4,自引:2,他引:2  
江琪  银燕  秦彦硕  陈魁  杨素英 《气象科学》2013,33(3):237-245
应用多种化学组分气溶胶的绝热气块分档模式,对2008年春季黄山地区气溶胶吸湿增长特性进行了模拟分析.结果表明:黄山地区气溶胶吸湿增长因子f的大小与粒子半径、相对湿度、粒子化学组分、上升速度及上升高度密切相关,且小粒子吸湿增长比大粒子显著.吸湿增长因子与相对湿度呈正相关,相对湿度越接近粒子的临界饱和比,吸湿增长因子变化越显著.可溶性有机气溶胶,通过增加溶液中溶质的百分比来影响临界饱和比,使吸湿增长因子增大.若不考虑不可溶粒子的成核作用,会高估粒子的吸湿性.随着上升速度增大,吸湿增长因子降低,降低程度与粒子初始高度的相对湿度有关.上升高度通过改变气块相对湿度的变化来影响气溶胶吸湿增长因子.  相似文献   

6.
降水现象对大气消光系数和能见度的影响   总被引:8,自引:2,他引:6       下载免费PDF全文
大气中各种粒子对大气消光系数和能见度有不同程度影响,除气溶胶粒子外,降水粒子对能见度影响也不可忽视。为了解降水粒子对能见度的影响,确定能见度变化与降水现象之间的关系,该文在分析降水粒子的大小、速度、形状、谱分布、光学特性等特征的基础上,忽略气溶胶粒子的影响,建立基于实测谱分布的降水与能见度的理论模型,讨论不同类型降雨、降雪对大气消光系数和能见度的影响。同时选取Parsivel降水粒子谱仪在南京地区的降雨和降雪观测记录,利用实测数据来对比验证本文所建立的降水-能见度理论模型。结果表明:能见度随着降水强度的增大呈指数降低;受降水粒子特性和天气条件等多种因素影响,能见度与降水强度之间的关系并不是唯一对应的;降雨和降雪对能见度的影响各不相同,相比而言,降雨对能见度的影响比较容易确定,而降雪对能见度的影响比较复杂,主要因为雪花或冰晶的类型复杂多变,对大气消光系数有不同程度的影响。结合理论分析和实测数据对比验证,降水现象对能见度的影响得到了证实。  相似文献   

7.
On February 8, 1993, the NASA DC-8 aircraft profiled from 10,000 to 37,000 feet (3.1–11.3 km) pressure altitude in a stratified section of tropical cyclone “Oliver” over the Coral Sea northeast of Australia. Size, shape and phase of cloud and precipitation particles were measured with a 2-D Greyscale probe. Cloud/ precipitation particles changed from liquid to ice as soon as the freezing level was reached near 17,000 feet (5.2 km) pressure altitude. The cloud was completely glaciated at −5°C. There was no correlation between ice particle habit and ambient temperature. In the liquid phase, the precipitation-cloud drop concentration was 4.0 × 103 m−3, the geometric mean diameter Dg=0.5−0.7 mm, and the liquid water content 0.7−1.9 g m−3. The largest particles anywhere in the cloud, dominated by fused dendrites at concentrations similar to that of raindrops (2.5 × 103 m−3) but a higher condensed water content (5.4 g m−3 estimated) were found in the mixed phase; condensed water is removed very effectively from the mixed layer due to high settling velocities of the large mixed particles. The highest number concentration (4.9 × 104 m−3), smallest size (Dg=0.3−0.4 mm), largest surface area (up to 2.6 × 102 cm2 m−3 at 0.4−1.0 g m−3 of condensate) existed in the ice phase at the coldest temperature (−40°C) at 35,000 feet (10.7 km). Each cloud contained aerosol (haze particles) in addition to cloud particles. The aerosol total surface area exceeded that of the cirrus particles at the coldest temperature. Thus, aerosols must play a significant role in the upscattering of solar radiation. Light extinction (6.2 km−1) and backscatter (0.8 sr−1 km−1) was highest in the coldest portion of the cirrus cloud at the highest altitude.  相似文献   

8.
We present a microphysical model for the surface layer marine and coastal atmospheric aerosols that is based on long-term observations of size distributions for 0.01–100 µm particles. The fundamental feature of the model is a parameterization of amplitudes and widths for aerosol modes of the aerosol size distribution function (ASDF) as functions of fetch and wind speed. The shape of ASDF and its dependence on meteorological parameters, height above sea level (H), fetch (X), wind speed (U) and relative humidity (RH), are investigated. At present, the model covers the ranges H = 0–25 m, U?=?3–18 km s?1, X?≤?120 km and RH?=?40–98%.

The latest version of the Marine Aerosol Extinction Profiles model (MaexPro) is described and applied to the computation and analysis of the spectral profiles of aerosol extinction coefficients α(λ) in the wavelength band λ?=?0.2–12 µm. MaexPro is based on the aforementioned aerosol model assuming spherically shaped aerosol particles and the well-known Mie theory.

The spectral profiles of α(λ) calculated by MaexPro are in good agreement with observational data and the numerical results obtained from the Navy Aerosol Model (NAM) and the Advanced Navy Aerosol Model (ANAM). Moreover, MaexPro was found to be an accurate and reliable tool for investigating the optical properties of atmospheric aerosols.  相似文献   

9.
Reliable predictions of the daytime dispersal of heavy particles in the unstable atmospheric boundary layer are important in a variety of disciplines. For many applications, particles disperse from area sources near the ground, and corresponding theoretical solutions are desired to reveal insight into the physical processes. Here, theoretical solutions recently developed for neutral conditions are modified to include the effects of atmospheric instability. The Obukhov length L O and convection velocity w ? are introduced to characterize the patterns of particle dispersion, in additional to friction velocity u ? and settling velocity w s used in the neutral case. The major effects of atmospheric instability are accounted for by modifying the vertical velocity variance profile and considering the ratio of velocity scales w ?/u ?. Theoretical predictions including the mean concentration profile, plume height, and horizontal transport above the source, and ground deposition flux downwind from the source agree well with large-eddy simulation results while the particle plume is within the atmospheric surface layer. The deposition curve is characterized by a power-law decay whose exponent depends on u ?, w s, and w ?. A second steeper power-law develops once the plume extends into the mixed layer. This effect is enhanced with increasing atmospheric instability, implying that particles disperse farther from the source.  相似文献   

10.
Based on the CALIPSO (Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observation) Version 4.10 products released on 8 November 2016, the Level 2 (L2) aerosol product over the Tibetan Plateau (TP) is evaluated and the aerosol radiative effect is also estimated in this study. As there are still some missing aerosol data points in the daytime CALIPSO Version 4.10 L2 product, this study re-calculated the aerosol extinction coefficient to explore the aerosol radiative effect over the TP based on the CALIPSO Level 1 (L1) and CloudSat 2B-CLDCLASS-LIDAR products. The energy budget estimation obtained by using the AODs (aerosol optical depths) from calculated aerosol extinction coefficient as an input to a radiative transfer model shows better agreement with the Earth’s Radiant Energy System (CERES) and CloudSat 2B-FLXHR-LIDAR observations than that with the input of AODs from aerosol extinction coefficient from CALIPSO Version 4.10 L2 product. The radiative effect and heating rate of aerosols over the TP are further simulated by using the calculated aerosol extinction coefficient. The dust aerosols may heat the atmosphere by retaining the energy in the layer. The instantaneous heating rate can be as high as 5.5 K day–1 depending on the density of the dust layers. Overall, the dust aerosols significantly affect the radiative energy budget and thermodynamic structure of the air over the TP, mainly by altering the shortwave radiation budget. The significant influence of dust aerosols over the TP on the radiation budget may have important implications for investigating the atmospheric circulation and future regional and global climate.  相似文献   

11.
To improve our understanding of aerosol formation and ageing in urban atmospheres, we have tested the ORISAM 0-D aerosol module (ORganic and Inorganic Spectral Aerosol Model). This module accounts for both types of primary carbonaceous particles (black carbon BC and primary organic carbon OCp) and also simulates the formation of secondary inorganic and organic particles (sulfates, nitrates, ammonium, water and secondary organic carbon particles OCsec) by attachment of gas precursors to pre-existing carbonaceous particles. Simulations were performed for surface aerosols over Greater Paris area during the ESQUIF summer 1998 and winter 2000 experiments. Results show that OCsec formation is highly dependent on temperature and insolation with more intense secondary formation in summer than in winter. Moreover in Summer, when atmospheric conditions shift from warm and humid to hot and dry, the model indicates a decreasing formation of secondary organic aerosols OCsec as shown by an increase of the OCp/(OCp+OCsec) ratio from 42 to 56%. These results satisfactorily compare with the few experimental available data for BC/(OCp+OCsec) ratios increasing from 24 to 37% against modelled values in the range 21–32%. ORISAM module sensitivity to initial size distributions, background concentrations and emissions of gases and primary carbonaceous particles was documented too. One main result is that the formation of secondary organic particles with ORISAM is very sensitive to the concentrations of gaseous precursors. At the present stage of ORISAM development, OCsec build up appears to be however less sensitive to particulate background concentrations.  相似文献   

12.
Abstract

The optical parameters of Arctic haze, such as the scattering and the absorption coefficients and the asymmetry factor, have been estimated using a theoretical haze model. The Aden and Kerker solution for spherical nuclei coated with a spherical shell was employed to account for the observed sulphuric acid coating on Arctic aerosols. Six original aerosol materials are considered; four are natural and two are anthropogenic in origin (sulphuric acid and soot). The relative humidity is varied between 0 and 99% and the effects of anthropogenic substances are examined. Carbonaceous material can increase the absorption coefficient by up to a factor 5 in the visible range, while sulphuric acid significantly increases the growth of particles and affects all of the optical parameters. The haze model is found to be consistent with available measurements of aerosol characteristics and optical parameters. The haze model is then used to convert a vertical profile of the extinction coefficient to a profile of particle concentration.  相似文献   

13.
The problem of the contribution of cosmic rays to climate change is a continuing one and one of importance. In principle, at least, the recent results from the CLOUD project at CERN provide information about the role of ionizing particles in ’sensitizing’ atmospheric aerosols which might, later, give rise to cloud droplets. Our analysis shows that, although important in cloud physics the results do not lead to the conclusion that cosmic rays affect atmospheric clouds significantly, at least if H2SO4 is the dominant source of aerosols in the atmosphere. An analysis of the very recent studies of stratospheric aerosol changes following a giant solar energetic particles event shows a similar negligible effect. Recent measurements of the cosmic ray intensity show that a former decrease with time has been reversed. Thus, even if cosmic rays enhanced cloud production, there would be a small global cooling, not warming.  相似文献   

14.
An 8-wavelength sun-photometer has been operated at Hefei (31.31°N, 117.17°E) to monitoroptical properties of atmospheric aerosols. Altogether 133 solar spectral extinction data were ob-tained on clear days during the period from September 1993 through September 1994, In this pa-per, the feature of the sun-photometer is briefly described. A relative aureole method is intro-duced. which can be used to monitor temporal evolution of aerosol loading during the sun-pho-tometer calibration period. Temporal variabilities of spectral aerosol optical depths and Angstromturbidity parameters are presented. Relation of these variabilities with synoptic and local meteoro-logical conditions are analyzed and discussed, From measured spectral aerosol optical depths undersome representative atmospheric conditions, columnar aerosol size distributions have been retrievedby a linearly constrained inversion method. These typical columnar aerosol size distributions are al-so presented and discussed.  相似文献   

15.
During the FOS-DECAFE experiment at Lamto, Ivory Coast, in January 1991, various ground studies were undertaken simultaneously in order to investigate the physical and chemical characteristics of smoke emitted by savanna biomass burning. Here we present sunphotometer ground-based results which allow the measurements of the spectral optical depth between 450 and 850 nm, the atmospheric water vapour content and the particle size distribution spectrum. The carbonaceous content of the savanna biomass burning aerosols is also investigated. This is the first time that the physical characteristics of particles emitted by savanna plumes are obtained from ground-field studies. All the results suggest that a rapid aging of the smoke occurs first hundred metres from the savanna fire èmission source. They show a relationship between the optical properties of smoke and the chemical aging of the aerosols primarily due to particle growth and a loss of organic material relative to the black carbon content.  相似文献   

16.
气溶胶对陆生植物生长的影响研究进展   总被引:1,自引:0,他引:1  
陆生植物生长过程受太阳辐射、热量、水分、土壤等多重因素的影响,气溶胶粒子通过对太阳辐射的散射和吸收,并作为云凝结核和冰核,改变云的物理特性及生命期对上述环境因子产生影响,进而影响植物的生长。气溶胶的直接影响主要表现为气溶胶覆盖植物叶片,影响植物的呼吸作用、气孔导度及对阳光的利用率等;间接影响主要表现在气溶胶可降低入射太阳辐射量并降低光合作用及净初级生产力,但同时又会增加散射辐射量,增加植物可利用光合有效辐射,产生相互矛盾的结果;气溶胶还通过影响降水和气温,进一步影响植物对光、水、热的利用等方面。气溶胶对植物的生长影响以间接影响为主,直接影响较少。其次,各种大气气溶胶对植物的伤害作用超过大气气溶胶对植物生长促进作用。在人为气溶胶中,硫酸盐、黑碳及粉尘对植物生长以抑制作用为主,而氮化物中氮沉降既可以促进植物生长,含氮气溶胶形成的酸雨及光化学烟雾又会抑制植物生长。自然气溶胶中,火山气溶胶对植物生长产生的影响差异较大,沙尘总体对植物产生不利影响,而生物气溶胶及宇宙尘埃的影响研究还较少。  相似文献   

17.
Precipitable water measurements made coincident in time and space with direct broadband solar irradiance measurements are used in conjunction with an atmospheric transmission model to derive a parameter whose major dependence is on total aerosol extinction. Irradiance measurements are used to calculate an atmospheric transmission factor (ATF) that is independent of the instrument calibration and the extraterrestrial solar constant. The dependency of the ATF on precipitable water is determined using LOWTRAN5, an atmospheric transmission model with high spectral resolution. Precipitable water measurements are then used to adjust the measured ATF to correspond to an ATF value obtained for a constant precipitable water amount. The remaining variability in the adjusted ATF is due mostly to aerosol extinction. The technique is applied to a 6-year period (1978–1983) for clear-sky mornings at Mauna Loa, Hawaii (MLO). MLO ATF aerosol residuals are compared with independently measured monochromatic aerosol optical depth. Results show that the ATF aerosol residual is nearly equal to the 500 nm aerosol optical depth prior to the eruption of E1 Chichon, at which time a nonlinear time-dependent relationship between the two quantities is evident. ATF aerosol residuals reflect the spectrally integrated aerosol influence on transmission and, therefore, could indicate better than monochromatic optical depth the radiation balance perturbations due to aerosols. The 6-year precipitable water record for MLO, determined from a dual-channel sunphotometer, has a mean value of 0.3 cm. An annual cycle in precipitable water is evident, as is a 4-month 5-standard-deviation drought from December 1982 through March 1983.  相似文献   

18.
Functional relationships linking at λ0=351 nm aerosol extinction αλ0aer and backscatter coefficient βλ0aer of maritime and desert type aerosols are determined to allow for inversion of the single-wavelength lidar signals. Such relationships are derived as mean behavior of 20,000 extinction versus backscatter computations, performed for aerosol size distributions and compositions whose describing parameters are randomly chosen within the naturally observed variability. For desert-type aerosols, the effect of the particle non-sphericity is considered and it is shown that the extinction to backscatter ratio of non-spherical dust particles can be up to 60% larger than the values obtained for spherical particles. Aerosol extinction and backscatter coefficient profiles obtained inverting the single-wavelength lidar signal with the modeled relationships are then compared to the same profiles measured by a combined elastic-Raman lidar operating at 351 nm. Analytical back trajectories and satellite images are used to characterize advection patterns during lidar measurements and to properly choose the modeled functional relationship. A good accordance between the two techniques is found for advection patterns over the lidar site typical of maritime and dust conditions. Maximum differences between the model-based αλ0aer and βλ0aer vertical profiles and the corresponding ones measured by the combined elastic-Raman lidar technique are of 30% and 40% in maritime and desert dust conditions, respectively. The comparison of elastic-Raman lidar measurements and model-based results also reveals that particle non-sphericity must be taken into account when mineral dust-type aerosols are directly advected over the measurement site.  相似文献   

19.
A significant fraction of the total number of particles present in the atmosphere is formed by nucleation in the gas phase. Nucleation and the subsequent growth process influence both number concentration of particles and their size distribution besides chemical and optical properties of atmospheric aerosols. Sulphate aerosol nucleation mechanisms promoted by ions have been evaluated here in a tropospheric interactive chemistry-aerosol module for mass and number concentration in a global atmospheric model. The indirect radiative forcing of sulphate particles is assessed in this model; indirect radiative forcing is different for ion-induced (IIN) and ion-mediated (IMN) mechanisms. The indirect radiative forcing in 10-year simulation runs has been calculated as ?1.42?W/m2 (IIN) and ?1.54?W/m2 (IMN). The 5% emission of primary sulphate particles in simulations changes the indirect radiative forcing from ?1.42 to ?1.44?W/m2 for IIN case, and from ?1.54 to ?1.55 W/m2 for the IMN case. More precisely, owing to greater nucleation rates, IMN mechanisms produces greater cooling than the IIN mechanisms in the backdrop that both mechanisms produce almost identical distribution of CDNC in their pre-industrial runs. The inclusion of primary particles in simulations with IIN and IMN mechanisms increases both CDNC and the indirect radiative forcing.  相似文献   

20.
Hygroscopicity measurements of secondary organic aerosol (SOA) particles often show inconsistent results between the supersaturated and subsaturated regimes, with higher activity as cloud condensation nucleus (CCN) than indicated by hygroscopic growth. In this study, we have investigated the discrepancy between the two regimes in the Lund University (LU) smog chamber. Various anthropogenic SOA were produced from mixtures of different precursors: anthropogenic light aromatic precursors (toluene and m-xylene), exhaust from a diesel passenger vehicle spiked with the light aromatic precursors, and exhaust from two different gasoline-powered passenger vehicles. Three types of seed particles were used: soot aggregates from a diesel vehicle, soot aggregates from a flame soot generator and ammonium sulphate (AS) particles. The hygroscopicity of seed particles with condensed, photochemically produced, anthropogenic SOA was investigated with respect to critical supersaturation (sc) and hygroscopic growth factor (gf) at 90% relative humidity. The hygroscopicity parameter κ was calculated for the two regimes: κsc and κgf, from measurements of sc and gf, respectively. The two κ showed significant discrepancies, with a κgf /κsc ratio closest to one for the gasoline experiments with ammonium sulphate seed and lower for the soot seed experiments. Empirical observations of sc and gf were compared to theoretical predictions, using modified Köhler theory where water solubility limitations were taken into account. The results indicate that the inconsistency between measurements in the subsaturated and supersaturated regimes may be explained by part of the organic material in the particles produced from anthropogenic precursors having a limited solubility in water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号