首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 595 毫秒
1.
Abstract

Ground‐based sunphotometry measurements acquired under clear sky conditions can be used to investigate atmospheric aerosol optical properties. Such measurements are not only important in their own right as a technique for monitoring generic aerosol dynamics, but also represent a direct means of evaluating the contribution of aerosol induced radiative forcing in the modelling of climate change. In this paper we analyze derived aerosol optical properties using datasets from the Canadian AEROCAN (AERosol CANada) sunphotometer network.

The AEROCAN network currently includes eight sunphotometers distributed across Canada at sites chosen in order to obtain a diverse sampling of continental, maritime and arctic aerosols. Some of these sites have been operational since 1993 as part of the Boreal Ecosystem‐Atmosphere Study (BOREAS). These instruments permit standard and automatic multi‐wavelength measurements of solar extinction radiance centred on the solar disk as well as sky radiance scans off the solar disk. These data yields aerosol optical depth, the Ångström exponent, aerosol particle volume size distribution, refractive index, column‐averaged single scattering albedo, and precipitable water vapour content.

Spatial and temporal trends of these parameters as well as observed inter‐correlations are discussed. The results demonstrate the utility and significance of these types of measurements and illustrate the potential applications of networked sunphotometry data.  相似文献   

2.
Abstract

Temporal variations of the transmission coefficient and aerosol optical depth of the atmosphere are considered using multi‐year observations at the Soviet polar stations in the Arctic. The contribution of atmospheric aerosol to the total extinction of solar radiation is estimated. A decreasing trend of atmospheric transparency due to the increase of aerosol contributing to the extinction of solar radiation during the last 25–30 years is noted. Estimates of the atmospheric aerosol influence on the incoming solar radiation indicate that a further systematic decrease of the transmission coefficient may lead to climatic changes of direct and total radiation in most polluted areas of the Arctic.  相似文献   

3.
The aerosol optical depth of the atmospheric boundary layer was determined both from direct solar irradiance measurements and from vertical extrapolation of ground-based nephelometry, during a period with cloudless skies and high aerosol mass loadings in the Netherlands. The vertical profile of the aerosol was obtained from lidar measurements. From humidity controlled nephelometry at the ground and humidity profiles from soundings, the scattering aerosol extinction as a function of height was assessed. Integration of the extinction over the aerosol layer gave the aerosol optical depth of the atmospheric boundary layer. This optical depth at the narrow band of the nephelometer was translated to a spectrally integrated value, assuming an Angstrom wavelength exponent of 1.5, a typical value for The Netherlands.It was found that scattering by the boundary layer aerosol contributed on average 80% to the total atmospheric aerosol optical depth. The uncertainty in this value is estimated to be of the order of 13%. Ammonium nitrate dominated the light scattering. This is an anthropogenic aerosol component.The radiative forcing caused by the light scattering of the anthropogenic aerosol was calculated assuming an upward scattered fraction of 0.3. An average value of − 12 W m −2 was found (with an estimated uncertainty of 20%). This corresponds to an absolute increase in the planetary albedo of 0.03, which is equivalent to a 15% increase in the local planetary albedo of 0.2.  相似文献   

4.
We present measurements of the vertical aerosol structure and the aerosol optical depth in the lower troposphere performed above the city of Sofia (an urban area situated in a mountain valley), western Bulgaria by means of a ground-based aerosol lidar operating continuously for a number of years. The lidar measurements were accompanied by measurements of the aerosol optical depth (AOD) in the visible and near infrared regions of the spectrum performed in October 2004 using Microtops II radiometers. The maximum values of the AOD were found to occur 1–2 h before the complete development of the atmospheric boundary layer, i.e. during the residual layer destruction, which confirms our hypothesis concerning the slope circulation effect on the processes taking place in the atmospheric boundary layer. The AOD values obtained by the lidar are lower than those taken by the sun photometer. Further, the AOD exhibits two different types of behaviour. In the case of a ‘clear atmosphere’ (i.e. in the absence of volcanic eruptions and/or dust transport from the Sahara) most of the aerosol accumulated within the atmospheric boundary layer over the urban area considered. The combined use of the two instruments allows the comparison between the optical characteristics of the atmospheric aerosol (e.g. aerosol extinction coefficient, etc.) obtained by the lidar and through an independent method (sun photometer).  相似文献   

5.
Measurements at Barrow during the second Arctic Gas and Aerosol Sampling Program (AGASP-II), conducted in April 1986, showed no rapid long-range transport from lower-latitude source regions to Barrow, and only limited vertical transport from above the boundary layer to the surface. New aerosol size distribution measurements in the 0.005–0.1 m diameter size range using a Nuclepore-filter diffusion battery apparatus showed a median diameter of about 0.01 m during times of high condensation nucleus (CN) concentrations. Aerosol black carbon concentrations exceeding 400 ng m–3 were detected at the surface and were more strongly correlated with CN concentrations than with aerosol scattering extinction (sp), suggesting that aerosol carbon was generally associated with small particles rather than large particles. Measurements at Barrow during AGASP-I, conducted in March–April 1983, showed a series of aerosol events detected at the ground that were caused by rapid long-range transport paths to the vicinity of Barrow from Eurasia. These events were strongly correlated with aerosol loading in the vertical column (optical depth).  相似文献   

6.
北京地区对流层中上部云和气溶胶的激光雷达探测   总被引:39,自引:8,他引:39  
介绍了近年来研制的一台多波长激光雷达及其探测对流层高云和气溶胶的实验,并依据探测结果重点分析了北京2000年1月至4月对流层上部云和气溶胶在532 nm波长的消光系数分布特征.结果表明:从6 km至11 km的气溶胶光学厚度值在0.0152至0.0284之间变化,均值为0.0192.从6 km至11 km的云光学厚度值在0.014至0.23之间变化.观测到的单层高云的厚度最大为6 km.4月6日,近年来最强的一次沙尘暴袭击北京.4月7日北京地区无可见云,激光雷达探测结果表明,从4 km至10 km高度范围内,存在一层厚度约为6 km的气溶胶粒子层,消光系数峰值处于8 km附近,比晴天无云时的消光系数值约大一个数量级.估计这是一层沙尘气溶胶,系由远距离输送至北京形成的.  相似文献   

7.
利用2000年6月1日~8月11日北京地区地基全球定位系统(Globe Positioning System)网遥感大气总水汽量试验的观测资料,分析了北京地区夏季大气总水汽量的时空变化,研究了大气总水汽量与日平均温度、地面水汽压和降水的关系.研究结果表明:大气总水汽量存在明显的时空变化,对于地理位置基本相近的台站,海拔高度的影响比较明显,一般情况下高山站的水汽总量低于平原站;在晴天,地面水汽压与大气总水汽量有较好的相关性,而在云雨日,由于高低层大气湿度的变化常常不同步,用地面水汽压估算的大气总水汽量具有较大的偏差;大气总水汽量短时间内的快速增加往往对应有降水过程出现,但总水汽量的大小与降水量之间并没有明显的相关,在降水预报中应综合考虑总水汽量的前期平均水平、短时的增幅和峰值大小等条件的影响.  相似文献   

8.
Progresses of atmospheric remote sensing research in China during 1999-2003 are summarily introduced.This research includes: (1) microwave remote sensing of the atmosphere; (2) Lidar remote sensing; (3)remote sensing of aerosol optical properties; and (4) other research related to atmospheric remote sensing,including GPS remote sensing of precipitable water vapor and radiation model development.  相似文献   

9.
Progresses of atmospheric remote sensing research in China during 1999-2003 are summarily introduced.This research includes: (1) microwave remote sensing of the atmosphere; (2) Lidax remote sensing; (3)remote sensing of aerosol optical properties; and (4) other research related to atmospheric remote sensing,including GPS remote sensing of precipitable water vapor and radiation model development.  相似文献   

10.
Light extinction by atmospheric particles is strongly dependent on their chemical composition and water content. Since light extinction directly impacts climate, optical measurements of atmospherically relevant aerosols at varying relative humidities (RH) are needed. Recent studies have highlighted the possibility that some atmospheric aerosols are glassy under ambient conditions. Here, the particle optical growth factor, fRHext, was measured for liquid and glassy particles using cavity ring-down aerosol extinction spectroscopy. The particles were composed of ammonium sulfate (AS), 1,2,6-hexanetriol, sucrose, raffinose, and mixed particles containing AS and either sucrose or raffinose. Both sucrose and raffinose can be glassy at room temperature. For the pure organics, the highly viscous sucrose and raffinose particles have similar optical growth curves to the liquid 1,2,6 hexanetriol particles. However, for particles composed of sucrose or raffinose mixed with AS, optical growth depends on the AS weight-percent, which in turn controls the phase state of the AS and ultimately the water uptake.  相似文献   

11.
The current paper introduces an empirical method for estimating the vertical distribution of background stratospheric aerosol extinction profiles covering the latitude bands of 50±5°N,40±5°N,30±5°N,and 20±5°N and the longitude range of 75 135°E based on Stratospheric Aerosol and Gas Experiment (SAGE) II aerosol extinction measurements at wavelengths of 1020 nm,525 nm,452 nm,and 386 nm for the volcanically calm years between 1998 2004.With this method,the vertical distribution of stratospheric aerosol extinction coefficients can be estimated according to latitude and wavelength.Comparisons of the empirically calculated aerosol extinction profiles and the SAGE II aerosol measurements show that the empirically calculated aerosol extinction coefficients are consistent with SAGE II values,with relative differences within 10% from 2 km above the tropopause to 33 km,and within 22% from 33 km to 35 km.The empirically calculated aerosol stratospheric optical depths (vertically integrated aerosol extinction coefficient) at the four wavelengths are also consistent with the corresponding SAGE II optical depth measurements,with differences within 2.2% in the altitude range from 2 km above the tropopause to 35 km.  相似文献   

12.
Summary A sun photometer fitted with 9 narrowband interference filters from 368 nm to 1024 nm was used to determine the aerosol optical depth at 8 measuring stations in Europe. Of the 9 filters, 4 were not included in the standard equipment of the sun photometer. Given the temporal instabilities of the calibration factors of these 4 filters, meaningful results for the aerosol optical depth can be achieved only if calibration and measurements follow each other closely. Calibration was performed using the Langley plot method. For wavelengths < 500 nm, the measured aerosol optical depths were compared with the results of a high resolution spectrometer. Broadband aerosol optical depths, centred at 427 nm, were determined with an actinometer and were also used for comparison. Generally, there was good agreement of the results. To characterize the aerosol optical depths, the Ångström parameters and were used. The individual measuring stations showed a clustered distribution of and values.With 6 Figures  相似文献   

13.
该文简要介绍了遥感气溶胶光学厚度的宽带消光法, 重点比较与分析了2001~2002年间北京地区宽带消光法和全球气溶胶探测网(AERONET)气溶胶光学厚度的探测结果.对比结果表明, 两类探测结果在无云晴天的条件下具有很好的吻合, 二者的相关系数达到90%以上.另外, 作者还针对宽带消光法反演月平均气溶胶光学厚度问题, 提出了一个减小云对反演结果影响的方法, 即月平均光学厚度约束法, 并与全球气溶胶探测网探测结果做对比分析.二者结果的一致性表明该约束方法的有效性.  相似文献   

14.
基于腔减相移光谱(CAPS)技术检测灵敏度高、光源性价比好、容易控制和有效吸收光程长等优点,搭建了一套基于CAPS技术的连续测量大气气溶胶消光系数的监测系统。测试系统高反射镜片反射率约为0.9999,对应有效光程约为4.4 km;通过Allan方差测试分析系统最佳积分时间约为80 s,对应消光系数检测极限为0.06Mm-1;将系统应用于实际大气气溶胶消光系数的12个周期和48 h连续监测,显示空腔相移基本稳定,样品测量相移偏移明显,反演得到的大气能见度结果稳定可靠。由此表明,研制的基于CAPS技术的大气气溶胶消光系数连续测量系统应用于实际的测量是完全可行的。  相似文献   

15.
近年来大气遥感研究进展   总被引:3,自引:2,他引:1  
本文着重介绍中国科学院大气物理研究所2003年以来在大气遥感研究方面的主要进展与成果,内容包括:(1)遥感技术与设备的发展;(2)大气气溶胶遥感;(3)云遥感;(4)大气微量气体遥感;(5)反演方法发展;(6)大气辐射传输算法研究。气溶胶的光学特性遥感研究是近年来热点之一,本文简要论述在气溶胶光学特性地基和卫星遥感反演算法、中国大气气溶胶光学特性时空分布特性、气溶胶辐射强迫遥感研究等方面所取得的成果。  相似文献   

16.
敦煌地区晴空散射辐射影响因子的统计特征   总被引:3,自引:0,他引:3  
利用敦煌地区1981—1983年全年及1984年与1985年1~2月的日射观测资料,统计分析了敦煌地区晴空下散射辐射与太阳高度角、大气柱气溶胶垂直光学厚度等影响因子的关系,用最小二乘法拟合得到了相应的函数关系式。拟合结果表明:晴空下散射辐射与太阳高度角符合幂函数关系;晴空下散射辐射随大气柱气溶胶光学厚度线性增长。  相似文献   

17.
A direct comparison of urban and rural surface energy balances, as well as a variety of other variables including incoming shortwave/longwave radiation and aerosol optical depth, is conducted for the Beijing metropolitan area. The results indicate that, overall, the urban area receives a smaller amount of incoming shortwave radiation but a larger amount of incoming longwave radiation. However, comparisons in the aerosol optical depth and cloud fraction at the two locations suggest that neither aerosol optical depth nor cloud fraction alone can explain the difference in the incoming shortwave radiation. The urban–rural differences in the incoming longwave radiation are unlikely to be caused by the presence of more abundant greenhouse gases over the urban area, as suggested by some previous studies, given that water vapor is the most dominant greenhouse gas and precipitable water is found to be less in urban areas. The higher incoming longwave radiation observed over the urban area is mostly likely due to the higher temperatures of the ambient air. The urban area is also found to always produce higher sensible heat fluxes and lower latent heat fluxes in the growing season. Furthermore, the urban area is associated with a larger amount of available energy(the sum of sensible and latent heat fluxes) than the rural area, except in May and October when evapotranspiration in the rural area significantly exceeds that in the urban area. This study provides observational evidence of urban–rural contrasts in relevant energy-balance components that plausibly arise from urban–rural differences in atmospheric and land-surface conditions.  相似文献   

18.
Multiple‐angle micro‐pulse lidar (MPL) observations were made at Las Galletas on Tenerife, Canary Islands during the Aerosol Characterization Experiment‐2 (ACE‐2) conducted June–July, 1997. A principal objective of the MPL observations was to characterize the temporal/spatial distributions of aerosols in the region, particularly to identify and profile elevated Saharan dust layers which occur intermittently during the June–July time period. Vertical and slant angle measurements taken 16 and 17 July characterize such an occurrence, providing aerosol backscatter, extinction, and optical depth profiles of the dust layer between 1 and 5 km above mean sea level (MSL). Additionally, horizontal measurements taken in Las Galletas throughout the 6‐week period provide a time profile of the varying aerosol extinction at the surface. This profile exhibits the alternating periods of clean maritime air and pollution outbreaks that typified the region. Horizontal measurements also provide some evidence suggesting the possible influx of Saharan dust from the free troposphere to the surface. This paper presents estimates of aerosol optical properties retrieved from the multi‐angle MPL measurements in addition to an outline of the methodologies employed to obtain these results.  相似文献   

19.
An atmospheric monitoring station is operated at Cape Matatula, American Samoa, by the Geophysical Monitoring for Climatic Change program under the National Oceanic and Atmospheric Administration. A nearly continuous record of condensation nucleus (CN) concentration and multiwavelength aerosol scattering extinction coefficient (sp) is available from mid-1977 to the present. This report presents the 1977–1983 data. The long-term mean of CN concentration is 274 cm-3 the long-term mean of sp (550 nm) is 1.54×10-5, and no significant long-term, annual, or diurnal trend is apparent in either data record.  相似文献   

20.
Regular aerosol extinction and backscatter measurements using a UV Raman Lidar have been performed for almost 3 years in Hamburg in the frame of the German Lidar Network. A set of 92 aerosol extinction and 164 aerosol backscatter profiles has been used for statistical investigations. Mean values and variances of the aerosol extinction and backscatter in the boundary layer have been calculated. Large fluctuations during the whole year have been found. The measured aerosol extinction over Hamburg shows a seasonal cycle with highest values in early fall and a second less prominent peak in spring.An analysis of the data using back trajectories showed a dependence of the aerosol extinction on the origin of the air mass. The residence time of the air mass over industrialized areas was found to be an important parameter for the measured aerosol extinction at Hamburg. However, only a small part of the total variability could be explained by the air mass origin.For 75 cases of aerosol extinction measurements under cloud-free conditions, the aerosol backscatter profile and therefore, the lidar ratio as a function of altitude could be determined. Winter measurements of the lidar ratio are often close to model results for maritime aerosol, the summer measurements are close to the model results for urban or continental aerosols.The high quality of the data has been proven by intercomparisons with other lidar systems and with star photometer measurements of the aerosol optical depth during the Lindenberg Aerosol Characterization Experiment (LACE'98) field campaign.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号