首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   43篇
  免费   29篇
  国内免费   29篇
测绘学   1篇
大气科学   75篇
地球物理   6篇
地质学   7篇
海洋学   1篇
综合类   2篇
自然地理   9篇
  2022年   2篇
  2019年   3篇
  2018年   2篇
  2016年   4篇
  2015年   2篇
  2014年   3篇
  2013年   6篇
  2012年   9篇
  2011年   8篇
  2010年   4篇
  2009年   5篇
  2008年   8篇
  2007年   10篇
  2006年   7篇
  2005年   7篇
  2004年   5篇
  2003年   5篇
  2002年   3篇
  2001年   2篇
  2000年   1篇
  1999年   1篇
  1997年   1篇
  1994年   1篇
  1993年   1篇
  1988年   1篇
排序方式: 共有101条查询结果,搜索用时 15 毫秒
1.
北京城区近地面比湿和风场时空分布特征   总被引:6,自引:1,他引:5  
利用2008—2012年北京城区平均5 km的高密度自动气象站逐时观测数据,分析了北京城区近地面比湿、风向和风速的时空精细分布特征,初步探究了城市下垫面对局地气象要素的影响机制。研究表明:夏季白天北京城区为干岛,冬季城区表现为弱湿岛特征。受城市效应的影响,北京城区与郊区比湿日变化有明显差异。近地面10 m风受到地形、城市和季节性盛行风的共同影响。当气流经过城区时有明显的绕流现象。夏季05:00—10:00 (北京时,下同),受山风、弱的夏季偏南风和城市热岛共同作用,气流向城市中心辐合。冬季15:00—19:00,受季节盛行风偏北气流和谷风偏南气流的共同作用,在城区形成一条西北—东南走向的辐合线。对风速研究发现:城市粗糙下垫面使北京城区风速减小,二环路和三环路之间存在一条“n”状的风速小值带。由此可见,除已开展较多研究的城市热岛效应外,北京城市效应对近地面湿度和风场亦有显著影响。  相似文献   
2.
川西高温水热活动区深部热结构的地球物理分析   总被引:1,自引:0,他引:1       下载免费PDF全文
川西高温水热活动区是地热学研究的典型地区之一,该区温泉、热泉点分布广泛,这些温泉大多沿北西-南东向的金沙江断裂、德格-乡城断裂、甘孜-理塘断裂、鲜水河三条主断裂呈条带状分布.对此高温水热活动区开展地热学分析,是研究青藏高原"东构造结"深部地球动力学过程、开发利用川西高原地热资源的重要基础,具有重要的科学研究意义和实际应用价值.本文针对实测氦同位素所发现的壳幔热结构比,依据重力、航空磁法、地震资料,采用反演莫霍面、居里面深度等方法,对川西高温水热活动区的深部热结构进行了分析.同时对中高温热泉密集出露的巴塘、理塘以及康定水热活动区的典型壳幔热流构与深部背景场进行了对比研究.结果表明,地表氦同位素热流估算的深部热流结构与地球物理异常结果保持较好的对应关系.川西地区热流结构中地壳、地幔的热贡献比较接近:巴塘地区平均Qc/Q=51.38%、理塘地区平均Qc/Q=54.39%、康定地区平均Qc/Q=42.42%.川西地区表现出了"温壳温幔"型的深部热结构,但温地壳背景下形成较高地表热流的原因有待进一步研究.  相似文献   
3.
京津冀一次飑线过程的精细时空演变特征分析   总被引:7,自引:2,他引:5  
刘莲  王迎春  陈明轩 《气象》2015,41(12):1433-1446
利用常规探空资料、多普勒天气雷达资料和风廓线雷达资料对2013年3月19日夜里到20日凌晨发生在湖南中南部和广东北部的一次区域性雷暴大风天气进行了分析,发现本次强对流天气过程的天气尺度背景是北支高压脊的崩溃和南支槽的建立,槽前出现较强的低空急流和切变线并在湖南中南部和广东北部形成了上干冷下暖湿的温湿配置结构下发生并强烈发展的;地面自动站观测显示北风侵入到前期露点温度较高的贵州黄平地区并形成风向辐合触发了对流,之后对流单体东移进入前期地面辐合线和露点锋相配合,同时500 hPa极为干冷的湖南中部偏南地区不断发展加强成对流带;雷达观测显示19日夜里在湖南西部不断出现对流单体并在其东移南下过程中最终形成飑线结构,该飑线中存在多个超级单体;通过多普勒天气雷达的中气旋产品与雷暴大风出现时间对应比较发现:大多数由中气旋引发的雷暴大风,在雷暴大风出现前2~3个体扫,其中气旋底高不断下降至2 km左右或以下,且在雷暴大风出现前1~2个体扫,中气旋的最强切变高度显著下降至中气旋底高位置附近;通过风廓线雷达数据与雷暴大风出现时间对应比较发现:底层大气折射率结构常数(C2n)大幅度的跃升通常在雷暴大风出现前10~15 min左右出现,其对雷暴大风的出现可能具有一定的指示意义。基于雷达资料快速更新四维变分同化(RR4DVar)分析系统,利用京津冀6部新一代多普勒天气雷达资料和区域(约700个)自动站资料对2013年7月30—31日京津冀地区一次飑线系统在移动过程中系统不同部位的热动力结构及其环境场时空演变特征进行了分析。结果表明,这次飑线过程是在有利的天气尺度背景形势下发生发展的。飑线形成初期,其中段和南段前部有强的暖湿空气辐合上升运动,并受到强的中层垂直风切变的影响,且在飑线中南段两侧水平正负涡度近似平衡,这种环境下,十分有利于飑线中南段的组织发展。而北段前部受弱的中层垂直风切变及辐散下沉运动影响,不利于北段系统有组织的发展;随着飑线移动下山,中段和南段前部在较强的中层垂直风切变控制下,出现强的暖湿空气辐合上升运动,且存在偏南暖湿气流稳定输送到系统上升运动区中,这对飑线系统中段和南段自身对流单体新生及高度组织化极为有利。随着飑线演变为弓形回波,中段环境场仍维持强的中层垂直风切变且位于冷池出流边界的控制之下,由于地形强迫效应,有利于弓形回波前沿低空偏南暖湿气流的辐合上升,是飑线下山迅速增强并发展成弓形回波,且稳定维持的主要原因。  相似文献   
4.
延庆-张家口地区复杂地形冬季山谷风特征分析   总被引:8,自引:4,他引:4  
基于2016年12月—2017年2月和2017年12月—2018年2月两年冬季的近地面自动气象站逐时观测数据以及张家口探空数据分析延庆-张家口一带(包括张家口崇礼、赤城、海坨、小五台山区,延怀、怀涿、洋河、蔚县盆地以及北京延庆、昌平、怀柔部分平原地区)复杂地形的风场精细化时、空分布特征,揭示不同复杂地形下局地风场的时、空变化规律,加深对复杂地形动力、热力作用对近地面风场影响的认识,为冬季山区风场预报以及复杂地形数值模式改进提供参考。结果表明:晴朗小风天风持续性作为矢量平均风速和标量平均风速的比值,可以作为研究风场变化规律的重要参数。根据风持续性的日变化特征,可以将研究区域内所有站点分为10种类型,分别代表不同局地地形特征的影响,风持续与风向变化的相关也很强。研究区域主要有3种类型的地形风:斜坡风、峡谷风以及较大尺度的山区平原风。不同地形特征下的风场、风持续性存在明显不同的日变化特征,山风和谷风相互转化的时间也不同,山区最早,盆地次之,平原区最晚;山风时段持续时间较谷风时段长,风速小;晴朗小风天实测风反映了实际风场的特征,而排除环境背景风场,弱化地形动力作用后整个冬季的局地风作为理论山谷风,更能反映热力作用下的山谷风特征。   相似文献   
5.
复杂地形下雷暴增强过程的个例研究   总被引:12,自引:2,他引:10  
陈双  王迎春  张文龙  陈明轩 《气象》2011,37(7):802-813
本文基于多普勒雷达变分同化分析系统(VDRAS)反演的对流层低层热力和动力场,并结合多种稠密观测资料,对北京地区2009年7月22日一次弱天气尺度强迫下雷暴在山区和平原增强的机理进行了较深入的分析。研究结果表明:雷暴过程受大尺度天气系统影响不明显,对流前期地面弱冷锋,是此次雷暴新生的触发机制,高层冷平流、低层偏南暖湿气流的稳定维持和对流不稳定能量的聚集是本次雷暴增强的必要条件。雷暴从河北北部移进北京西北山区后,在下山和到达平原地区时,经历了两次明显的发展增强阶段。雷暴第一阶段下山增强,地形强迫起着主要作用,具体表现在三个方面:(1)地形斜坡使得雷暴冷池出流下山加速与稳定维持的偏南气流形成了强的辐合区;(2)地形抬升使得偏南暖湿入流强烈地上升,从而加剧了对流的发展;(3)地形抬高了冷池出流高度,使得出流与近地面偏南气流构成随高度顺转的低层垂直风切变,低层暖空气之上有冷平流叠加,使得雷暴前方的动力和热力不稳定增强。雷暴第二阶段在平原地区再次增强的主要原因是:组织完好的雷暴到达平原地区后,其冷池与低层暖舌在城区(朝阳地区)的对峙,产生了强的扰动温度梯度;强的冷池出流与势力相当的偏南暖湿气流相互作用产生了强的辐合上升气流,并与下沉气流在较长时间内共存;冷池出流形成的负涡度与低层切变产生的正涡度达到近似平衡状态。运用RKW理论,三者导致雷暴前方低层的辐合抬升最强,最有利于雷暴的维持发展。  相似文献   
6.
浅海和俯冲海沟等海域,不仅是矿产和油气资源主潜力区,也是构造地震频发区,其浅表热流和深部温度信息对于了解板块俯冲和岩浆活动等过程至关重要.这些区域浅层地温场和热流场受到底水温度波动(BTV)强烈扰动,其背景热流需由长期观测来获取.在全面分析了国内外海底热流长期观测技术特点后,我们提出了系缆式海底热流长期观测方案,2013年起陆续开展了部分核心技术的预研究及一系列海底、湖底及浅孔试验.结果表明:(1)自主研制的长周期低功耗微型测温单元,在2~36℃的环境下可连续观测1年;系缆式投放与回收方案即使在地形陡峭、1.5 kn流速及无动力定位等条件下仍然可行.(2)南海北部BTV总体随水深变浅而增强,在浅水区对浅层地温场扰动不可忽略.例如,在水深2600~3200 m和850~1200 m海域分别为0.025~0.053℃(17天内)、0.182~0.417℃(2天内),而台西南盆地北坡(水深763 m)夏季的海底热流由浅表的0.69 W·m-2转变为0.83 m以深的-0.25~-0.05 W·m-2.(3)兴伊措和湖光岩玛珥湖BTV向深部传导过程中其幅度逐渐减弱、相位滞后,进而导致热流方向与强度随季节发生变化.而康定中谷浅层(7 m内)地温在不同深度处同步波动,且冬高(35~36℃)夏低(28~32℃).推测为夏季大量降雨所致;其热流浅部低(0.504 W·m-2)深部高(0.901 W·m-2),指示着鲜水河断裂带深部热流体上涌.这些预研究工作为后续系缆式海底热流长期观测系统的正式研制与应用奠定了扎实基础.  相似文献   
7.
基于雷达资料快速刷新四维变分同化(RR4DVar)初始化的三维数值云模式,利用京津冀6部新一代多普勒天气雷达和区域自动气象站观测资料,针对2013年7月4日出现在京津冀平原地区的中尺度对流系统(MCS),开展了数值临近预报试验。研究结果表明,充分考虑雷达观测信息的对流尺度数值临近预报具有很大的优势,但也存在不足:(1)模式能够较好地把握中尺度对流系统的组织发展和移动演变特征,对风暴回波带的走向和尺度特征有较好的预报,但对强回波的强度和位置预报存在一定偏差;(2)模式预报可以反映风暴系统的中小尺度扰动特征,对风暴冷池和出流边界(阵风锋)的发展变化均有较为合理的预报;(3)模式对强降水中心和雨带位置的预报有很大优势,能较好地预报弱降水雨带的分布形势和雨量,但对强降水落区的预报偏大;(4)模式对风暴造成的对流性强降水的预报准确率较高,对0.5—10 mm阈值的降水范围预报偏差比较合理,对10 mm以上降水范围的预报偏大,但是对弱降水风暴的弱回波较强回波的预报性能要好;(5)由于三维数值云模式对京津冀复杂地形的处理不够完善,对山前风场预报偏差较大,造成对山前风暴的发展演变和山前降水的预报偏差较大。  相似文献   
8.
红层软岩属于滑坡、崩塌灾害的易发地层,岩石的微观结构特性对其宏观力学强度有着重要影响。对四川省屏山县和云南省绥江县采集的侏罗系红层砂岩、粉砂岩和泥岩样品进行了扫描电镜观察及变角模抗剪强度实验。基于MATLAB数字图像处理技术,提取了红层砂岩、粉砂岩和泥岩的微观结构参量,即孔隙率、颗粒磨圆度、颗粒定向度及欧拉数的量化值,进一步分析了上述各参量和抗剪强度的定量关系。研究结果表明:红层软岩的抗剪强度和孔隙率呈负指数关系,和颗粒磨圆度、定向度呈负相关线性关系,和欧拉数呈正相关线性关系。  相似文献   
9.
高分辨率WRF三维变分同化在北京地区降水预报中的应用   总被引:14,自引:4,他引:10  
为迎接2008年北京奥运会,改进北京地区的天气预报,建立了一个基于三重嵌套区域(27/9/3 km)的WRF三维变分同化(WRFVar)和WRF模式的高分辨率快速更新循环同化预报(Rapid-Up-date Cycle)系统,并针对2006年8月1日发生在北京地区的强对流天气进行了一系列数值试验,结果表明:高分辨率的快速更新循环系统很好地预报出了此次强降水过程;在WRF三维变分同化里调节背景场误差和观测误差,提高了降水预报的效果;插值得出的3 km背景场误差可以作为一个合理的近似在3 km分辨率的WRFVar中使用,用户可以不必积累高分辨率的预报场去计算背景场误差,从而节省大量计算资源。3 h频次的RUC已经能满足预报要求,更高频次(1 h)的RUC并没有导致预报的进一步提高。  相似文献   
10.
北京地区一次罕见的雷暴大风过程特征分析   总被引:26,自引:7,他引:19  
分析了2006年6月24日北京地区一次罕见的瞬时极大风速超过32 m.s-1的雷暴大风事件。多普勒天气雷达观测表明,此次强雷暴大风与镶嵌在飑线回波带中的弓形回波相关。后侧入流急流促使飑线回波带南段快速移动并与其前面的新生单体合并加强形成弓形回波。深厚的中气旋、低层径向速度辐合和高层辐散等在构成弓形回波的强对流单体形成过程中起了重要的作用。根据雷达回波特征演变推断,这次雷暴大风直接由构成弓形回波的一个强对流单体内的下击暴流导致。使用微波辐射计和风廓线仪的观测资料揭示了上述强风暴发生的环境条件,即高的对流有效位能值、中等强度的风垂直切变,以及风切变的分布特征为飑线等的产生提供了有利条件。下沉对流有效位能和对流层低层环境大气温度直减率明显增加并接近干绝热,这对即将到来的下击暴流具有指示意义。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号