首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The atmospheric aerosols can absorb moisture from the environment due to their hydrophilicity and thus affect atmospheric radiation fluxes. In this article, the ultraviolet radiation and relative humidity (RH) data from ground observations and a radiative transfer model were used to examine the influence of RH on ultraviolet radiation flux and aerosol direct radiative forcing under the clear-sky conditions. The results show that RH has a significant influence on ultraviolet radiation because of aerosol hygroscopicity. The relationship between attenuation rate and RH can be fitted logarithmically and all of the R2 of the 4 sets of samples are high, i.e. 0.87, 0.96, 0.9, and 0.9, respectively. When the RH is 60%, 70%, 80% and 90%, the mean aerosol direct radiative forcing in ultraviolet is ?4.22W m?2, ?4.5W m?2, ?4.82W m?2 and ?5.4W m?2, respectively. For the selected polluted air samples the growth factor for computing aerosol direct radiative forcing in the ultraviolet for the RH of 80% varies from 1.19 to 1.53, with an average of 1.31.  相似文献   

2.
 The atmospheric general circulation model ECHAM-4 is coupled to a chemistry model to calculate sulfate mass distribution and the radiative forcing due to sulfate aerosol particles. The model simulates the main components of the hydrological cycle and, hence, it allows an explicit treatment of cloud transformation processes and precipitation scavenging. Two experiments are performed, one with pre-industrial and one with present-day sulfur emissions. In the pre-industrial emission scenario SO2 is oxidized faster to sulfate and the in-cloud oxidation via the reaction with ozone is more important than in the present-day scenario. The atmospheric sulfate mass due to anthropogenic emissions is estimated as 0.38 Tg sulfur. The radiative forcing due to anthropogenic sulfate aerosols is calculated diagnostically. The backscattering of shortwave radiation (direct effect) as well as the impact of sulfate aerosols on the cloud albedo (indirect effect) is estimated. The model predicts a direct forcing of −0.35 W m-2 and an indirect forcing of −0.76 W m-2. Over the continents of the Northern Hemisphere the direct forcing amounts to −0.64 W m-2. The geographical distribution of the direct and indirect effect is very different. Whereas the direct forcing is strongest over highly polluted continental regions, the indirect forcing over sea exceeds that over land. It is shown that forcing estimates based on monthly averages rather than on instantaneous sulfate pattern overestimate the indirect effect but have little effect on the direct forcing. Received: 16 October 1996/Accepted: 24 October 1996  相似文献   

3.
A physically based cloud nucleation parameterization was introduced into an optical properties/radiative transfer module incorporated with the off-line air quality modeling system Regional Atmospheric Modeling System (RAMS)-Models-3 Community Multi Scale Air Quality (CMAQ) to investigate the distribution features of the first indirect radiative effects of sulfate, nitrate, and ammonium-sulfate-nitrate (ASN) over East Asia for the years of 2005, 2010, and 2013. The relationship between aerosol particles and cloud droplet number concentration could be properly described by this parameterization because the simulated cloud fraction and cloud liquid water path were generally reliable compared with Moderate Resolution Imaging Spectroradiometer (MODIS) retrieved data. Simulation results showed that the strong effect of indirect forcing was mainly concentrated in Southeast China, the East China Sea, the Yellow Sea, and the Sea of Japan. The highest indirect radiative forcing of ASN reached ?3.47 W m?2 over Southeast China and was obviously larger than the global mean of the indirect forcing of all anthropogenic aerosols. In addition, sulfate provided about half of the contribution to the ASN indirect forcing effect. However, the effect caused by nitrate was weak because the mass burden of nitrate was very low during summer, whereas the cloud fraction was the highest. The analysis indicated that even though the interannual variation of indirect forcing magnitude generally followed the trend of aerosol mass burden from 2005 to 2013, the cloud fraction was an important factor that determined the distribution pattern of indirect forcing. The heaviest aerosol loading in North China did not cause a strong radiative effect because of the low cloud fraction over this region.  相似文献   

4.
Quantifying the radiative forcing due to aerosol–cloud interactions especially through cirrus clouds remains challenging because of our limited understanding of aerosol and cloud processes. In this study, we investigate the anthropogenic aerosol indirect forcing (AIF) through cirrus clouds using the Community Atmosphere Model version 5 (CAM5) with a state-of-the-art treatment of ice nucleation. We adopt a new approach to isolate anthropogenic AIF through cirrus clouds in which ice nucleation parameterization is driven by prescribed pre-industrial (PI) and presentday (PD) aerosols, respectively. Sensitivities of anthropogenic ice AIF (i.e., anthropogenic AIF through cirrus clouds) to different ice nucleation parameterizations, homogeneous freezing occurrence, and uncertainties in the cloud microphysics scheme are investigated. Results of sensitivity experiments show that the change (PD minus PI) in global annual mean longwave cloud forcing (i.e., longwave anthropogenic ice AIF) ranges from 0.14 to 0.35 W m–2, the change in global annual mean shortwave cloud forcing (i.e., shortwave anthropogenic ice AIF) from–0.47 to–0.20 W m–2, and the change in net cloud forcing from–0.12 to 0.05 W m–2. Our results suggest that different ice nucleation parameterizations are an important factor for the large uncertainty of anthropogenic ice AIF. Furthermore, improved understanding of the spatial and temporal occurrence characteristics of homogeneous freezing events and the mean states of cirrus cloud properties are also important for constraining anthropogenic ice AIF.  相似文献   

5.
A group of twenty-four leading atmospheric and climate scientists provided subjective probability distributions that represent their current judgment about the value of planetary average direct and indirect radiative forcing from anthropogenic aerosols at the top of the atmosphere. Separate estimates were obtained for the direct aerosol effect, the semi-direct aerosol effect, cloud brightness (first aerosol indirect effect), and cloud lifetime/distribution (second aerosol indirect effect). Estimates were also obtained for total planetary average forcing at the top of the atmosphere and for surface forcing. Consensus was strongest among the experts in their assessments of the direct aerosol effect and the cloud brightness indirect effect. Forcing from the semi-direct effect was thought to be small (absolute values of all but one of the experts' best estimates were ≤0.5 W/m2). There was not agreement about the sign of the best estimate of the semi-direct effect, and the uncertainty ranges some experts gave for this effect did not overlap those given by others. All best estimates of total aerosol forcing were negative, with values ranging between −0.25 W/m2 and −2.1 W/m2. The range of uncertainty that a number of experts associated with their estimates, especially those for total aerosol forcing and for surface forcing, was often much larger than that suggested in 2001 by the IPCC Working Group 1 summary figure (IPCC, 2001).  相似文献   

6.
Richard VanCuren 《Climatic change》2012,112(3-4):1071-1083
Exploiting surface albedo change has been proposed as a form of geoengineering to reduce the heating effect of anthropogenic increases in greenhouse gases (GHGs). Recent modeling experiments have projected significant negative radiative forcing from large-scale implementation of albedo reduction technologies (“cool” roofs and pavements). This paper complements such model studies with measurement-based calculations of the direct radiation balance impacts of replacement of conventional roofing with “cool” roof materials in California. This analysis uses, as a case study, the required changes to commercial buildings embodied in California’s building energy efficiency regulations, representing a total of 4300 ha of roof area distributed over 16 climate zones. The estimated statewide mean radiative forcing per 0.01 increase in albedo (here labeled RF01) is ?1.38 W/m2. The resulting unit-roof-area mean annual radiative forcing impact of this regulation is ?44.2 W/m2. This forcing is computed to counteract the positive radiative forcing of ambient atmospheric CO2 at a rate of about 41 kg for each square meter of roof. Aggregated over the 4300 ha of cool roof estimated built in the first decade after adoption of the State regulation, this is comparable to removing about 1.76 million metric tons (MMT) of CO2 from the atmosphere. The point radiation data used in this study also provide perspective on the spatial variability of cool roof radiative forcing in California, with individual climate zone effectiveness ranging from ?37 to ?59 W/m2 of roof. These “bottom-up” calculations validate the estimates reported for published “top down” modeling, highlight the large spatial diversity of the effects of albedo change within even a limited geographical area, and offer a potential methodology for regulatory agencies to account for the climate effects of “cool” roofing in addition to its well-known energy efficiency benefits.  相似文献   

7.
RCP4.5: a pathway for stabilization of radiative forcing by 2100   总被引:3,自引:2,他引:1  
Representative Concentration Pathway (RCP) 4.5 is a scenario that stabilizes radiative forcing at 4.5?W?m?2 in the year 2100 without ever exceeding that value. Simulated with the Global Change Assessment Model (GCAM), RCP4.5 includes long-term, global emissions of greenhouse gases, short-lived species, and land-use-land-cover in a global economic framework. RCP4.5 was updated from earlier GCAM scenarios to incorporate historical emissions and land cover information common to the RCP process and follows a cost-minimizing pathway to reach the target radiative forcing. The imperative to limit emissions in order to reach this target drives changes in the energy system, including shifts to electricity, to lower emissions energy technologies and to the deployment of carbon capture and geologic storage technology. In addition, the RCP4.5 emissions price also applies to land use emissions; as a result, forest lands expand from their present day extent. The simulated future emissions and land use were downscaled from the regional simulation to a grid to facilitate transfer to climate models. While there are many alternative pathways to achieve a radiative forcing level of 4.5?W?m?2, the application of the RCP4.5 provides a common platform for climate models to explore the climate system response to stabilizing the anthropogenic components of radiative forcing.  相似文献   

8.
Anthropogenic aerosols play an important role in the atmospheric energy balance. Anthropogenic aerosol optical depth (AOD) and its accompanying shortwave radiative forcing (RF) are usually simulated by nu- merical models. Recently, with the development of space-borne instruments and sophisticated retrieval algorithms, it has become possible to estimate aerosol radiative forcing based on satellite observations. In this study, we have estimated shortwave direct radiative forcing due to anthropogenic aerosols over oceans in all-sky conditions by combining clouds and the Single Scanner Footprint data of the Clouds and Earth’s Radiant Energy System (CERES/SSF) experiment, which provide measurements of upward shortwave fluxes at the top of atmosphere, with Moderate Resolution Imaging Spectroradiometer (MODIS) aerosol and cloud products. We found that globally averaged aerosol radiative forcing over oceans in the clear-sky conditions and all-sky conditions were -1.03±0.48 W m-2 and -0.34 ±0.16 W m-2, respectively. Direct radiative forcing by anthropogenic aerosols shows large regional and seasonal variations. In some regions and in particular seasons, the magnitude of direct forcing by anthropogenic aerosols can be comparable to the forcing of greenhouse gases. However, it shows that aerosols caused the cooling effect, rather than warming effect from global scale, which is different from greenhouse gases.  相似文献   

9.
硫酸盐气溶胶直接辐射效应在线与离线模拟方法的比较   总被引:3,自引:0,他引:3  
利用区域气候模式RegCM 2与大气化学模式连接的模拟系统 ,比较了硫酸盐气溶胶辐射强迫的在线、离线模拟方法的硫酸盐柱含量、大气顶直接辐射强迫及地表温度响应。发现 :在线与离线模拟方法得到的硫酸盐柱含量、有无反馈大气顶直接辐射强迫和地表温度响应在许多地区有很大差异 ,这种差异在较小区域平均的尺度上更显著 ,在全区域平均尺度上也较为明显 ,是不能被忽略的 ;结果显示从硫酸盐含量到辐射强迫和地表温度响应逐渐加大的差异 ,说明硫酸盐气溶胶的辐射强迫与模拟方法有关 ,显示出较大的不确定性。  相似文献   

10.
The radiative forcing and climate response due to black carbon(BC) in snow and/or ice were investigated by integrating observed effects of BC on snow/ice albedo into an atmospheric general circulation model(BCC AGCM2.0.1) developed by the National Climate Center(NCC) of the China Meteorological Administration(CMA).The results show that the global annual mean surface radiative forcing due to BC in snow/ice is +0.042 W m 2,with maximum forcing found over the Tibetan Plateau and regional mean forcing exceeding +2.8 W m 2.The global annual mean surface temperature increased 0.071 C due to BC in snow/ice.Positive surface radiative forcing was clearly shown in winter and spring and increased the surface temperature of snow/ice in the Northern Hemisphere.The surface temperatures of snow-covered areas of Eurasia and North America in winter(spring) increased by 0.83 C(0.6 C) and 0.83 C(0.46 C),respectively.Snowmelt rates also increased greatly,leading to earlier snowmelt and peak runoff times.With the rise of surface temperatures in the Arctic,more water vapor could be released into the atmosphere,allowing easier cloud formation,which could lead to higher thermal emittance in the Arctic.However,the total cloud forcing could decrease due to increasing cloud cover,which will offset some of the positive feedback mechanism of the clouds.  相似文献   

11.
Global aerosol and ozone distributions and their associated radiative forcings were simulated between 1850 and 2100 following a recent historical emission dataset and under the representative concentration pathways (RCP) for the future. These simulations were used in an Earth System Model to account for the changes in both radiatively and chemically active compounds, when simulating the climate evolution. The past negative stratospheric ozone trends result in a negative climate forcing culminating at ?0.15 W m?2 in the 1990s. In the meantime, the tropospheric ozone burden increase generates a positive climate forcing peaking at 0.41 W m?2. The future evolution of ozone strongly depends on the RCP scenario considered. In RCP4.5 and RCP6.0, the evolution of both stratospheric and tropospheric ozone generate relatively weak radiative forcing changes until 2060–2070 followed by a relative 30 % decrease in radiative forcing by 2100. In contrast, RCP8.5 and RCP2.6 model projections exhibit strongly different ozone radiative forcing trajectories. In the RCP2.6 scenario, both effects (stratospheric ozone, a negative forcing, and tropospheric ozone, a positive forcing) decline towards 1950s values while they both get stronger in the RCP8.5 scenario. Over the twentieth century, the evolution of the total aerosol burden is characterized by a strong increase after World War II until the middle of the 1980s followed by a stabilization during the last decade due to the strong decrease in sulfates in OECD countries since the 1970s. The cooling effects reach their maximal values in 1980, with ?0.34 and ?0.28 W m?2 respectively for direct and indirect total radiative forcings. According to the RCP scenarios, the aerosol content, after peaking around 2010, is projected to decline strongly and monotonically during the twenty-first century for the RCP8.5, 4.5 and 2.6 scenarios. While for RCP6.0 the decline occurs later, after peaking around 2050. As a consequence the relative importance of the total cooling effect of aerosols becomes weaker throughout the twenty-first century compared with the positive forcing of greenhouse gases. Nevertheless, both surface ozone and aerosol content show very different regional features depending on the future scenario considered. Hence, in 2050, surface ozone changes vary between ?12 and +12 ppbv over Asia depending on the RCP projection, whereas the regional direct aerosol radiative forcing can locally exceed ?3 W m?2.  相似文献   

12.
Industrial pollution has a significant effect on aerosol properties in Changsha City, a typical city of central China. Therefore, year-round measurements of aerosol optical, radiative and chemical properties from 2012 to 2014 at an urban site in Changsha were analyzed. During the observation period, the energy structure was continuously optimized, which was characterized by the reduction of coal combustion. The aerosol properties have obvious seasonal variations. The seasonal average aerosol optical depth (AOD) at 500 nm ranged from 0.49 to 1.00, single scattering albedo (SSA) ranged from 0.93 to 0.97, and aerosol radiative forcing at the top of the atmosphere (TOA) ranged from ?24.0 to 3.8 W m?2. The chemical components also showed seasonal variations. Meanwhile, the scattering aerosol, such as organic carbon, SO42?, NO3?, and NH4+ showed a decrease, and elemental carbon increased. Compared with observation in winter 2012, AOD and TOA decreased by 0.14 and ?1.49 W m?2 in winter 2014. The scattering components, SO42?, NO3? and NH4+, decreased by 12.8 μg m?3 (56.8%), 9.2 μg m?3 (48.8%) and 6.4 μg m?3 (45.2%), respectively. The atmospheric visibility and pollution diffusion conditions improved. The extinction and radiative forcing of aerosol were significantly controlled by the scattering aerosol. The results indicate that Changsha is an industrial city with strong scattering aerosol. The energy structure optimization had a marked effect on controlling pollution, especially in winter (strong scattering aerosol).  相似文献   

13.
With the data of complex refractive index of sulfate aerosol,the radiative properties of the aerosol under 8 relative humidity conditions are calculated in this paper.By using the concentration distribution from two CTM models and LASG GOALS/AGCM,the radiative forcing due to hygroscopic sulfate aerosol is simulated.The results show that:(1)With the increase of relative humidity,the mass extinction coefficiency factor decreases in the shortwave spectrum;single scattering albedo keeps unchanged except for a little increase in longwave spectrum,and asymmetry factor increases in whole spectrum.(2)Larger differences occur in radiative forcingsimulated by using two CTM data,and the global mean forcing is -0.268 and -0.816 W/m2,respectively.(3)When the impact of relative humidity on radiative property is taken into account,the distribution pattern of radiative forcing due to the wet particles is very similar to that of dry sulfate,but the forcing value decreases by 60%.  相似文献   

14.
A recent modelling study has shown that precipitation and runoff over land would increase when the reflectivity of marine clouds is increased to counter global warming. This implies that large scale albedo enhancement over land could lead to a decrease in runoff over land. In this study, we perform simulations using NCAR CAM3.1 that have implications for Solar Radiation Management geoengineering schemes that increase the albedo over land. We find that an increase in reflectivity over land that mitigates the global mean warming from a doubling of CO2 leads to a large residual warming in the southern hemisphere and cooling in the northern hemisphere since most of the land is located in northern hemisphere. Precipitation and runoff over land decrease by 13.4 and 22.3%, respectively, because of a large residual sinking motion over land triggered by albedo enhancement over land. Soil water content also declines when albedo over land is enhanced. The simulated magnitude of hydrological changes over land are much larger when compared to changes over oceans in the recent marine cloud albedo enhancement study since the radiative forcing over land needed (?8.2?W?m?2) to counter global mean radiative forcing from a doubling of CO2 (3.3?W?m?2) is approximately twice the forcing needed over the oceans (?4.2?W?m?2). Our results imply that albedo enhancement over oceans produce climates closer to the unperturbed climate state than do albedo changes on land when the consequences on land hydrology are considered. Our study also has important implications for any intentional or unintentional large scale changes in land surface albedo such as deforestation/afforestation/reforestation, air pollution, and desert and urban albedo modification.  相似文献   

15.
Sea-salt optical properties and GCM forcing at solar wavelengths   总被引:1,自引:0,他引:1  
The single-scattering optical properties of sea-salt solution particles are parameterised as functions of relative humidity for various dry size distributions at solar wavelengths. The accuracy of the parameterisation is typically within 10% as compared to exact Mie calculations. In addition to the optical properties, the growth of the droplet mass ratio and the effective radius of the size distribution are also parameterised in terms of the relative humidity. Two-band models are presented: a four-band model for use in GCMs for climate studies and a 23-band model for use in higher spectral resolution models. The parameterisation is implemented in the Canadian General Circulation Model GCMIII, and an estimate of the first-order globally and yearly averaged solar direct radiative forcing due to sea-salt is estimated to be −0.15 W/m2 (cooling). The northern hemisphere forcing is estimated to be −0.11 W/m2 and the southern hemisphere is −0.19 W/m2. The monthly trends in the forcing for the two hemispheres are presented and discussed. The sensitivity of the forcing to the treatment of the growth of aerosols in the hysteresis region, where aerosol particles are either dry or supersaturated, is investigated along with other sensitivities.  相似文献   

16.
A Regional Climate Chemistry Modeling System that employed empirical parameterizations of aerosol-cloud microphysics was applied to investigate the spatial distribution, radiative forcing (RF), and climate effects of black carbon (BC) over China. Results showed high levels of BC in Southwest, Central, and East China, with maximum surface concentrations, column burden, and optical depth (AOD) up to 14 μg?m?3, 8 mg?m?2, and 0.11, respectively. Black carbon was found to result in a positive RF at the top of the atmosphere (TOA) due to its direct effect while a negative RF due to its indirect effect. The regional-averaged direct and indirect RF of BC in China was about +0.81 and ?0.95 W?m?2, respectively, leading to a net RF of ?0.15 W?m?2 at the TOA. The BC indirect RF was larger than its direct RF in South China. Due to BC absorption of solar radiation, cloudiness was decreased by 1.33 %, further resulting in an increase of solar radiation and subsequently a surface warming over most parts of China, which was opposite to BC’s indirect effect. Further, the net effect of BC might cause a decrease of precipitation of ?7.39 % over China. Investigations also suggested large uncertainties and non-linearity in BC’s indirect effect on regional climate. Results suggested that: (a) changes in cloud cover might be more affected by BC’s direct effect, while changes in surface air temperature and precipitation might be influenced by BC’s indirect effect; and (b) BC second indirect effect might have more influence on cloud cover and water content compared to first indirect effect. This study highlighted a substantial role of BC on regional climate changes.  相似文献   

17.
A regional climate model is employed to simulate the aerosols(dust,sulfate,black carbon,and organic carbon) and their direct effect on the climate over China.The emphasis is on the direct radiative forcing due to the change in mixing state of aerosols.The results show that direct radiative forcing is significantly different between externally and internally mixed aerosols.At the top of the atmosphere(TOA),the radiative forcing of externally mixed aerosols is larger than that of internally mixed ones,especially in the Tarim desert region where the difference is about 0.7 W m 2.At the surface,however,the situation becomes opposite,especially in the Sichuan basin where the difference is about-1.4 W m 2.Nonetheless,either externally or internally mixed aerosols in China can result in a significant cooling effect,except for the warming in South China in winter and the slight warming in North China in February.The cooling effect induced by externally mixed aerosols is weaker than that induced by internally mixed aerosols,and this is more obvious in spring and winter than in summer and autumn.In spring and summer,the inhibiting effect of externally mixed aerosols on precipitation is less than that of internally mixed aerosols,whereas in autumn and winter the difference is not obvious.  相似文献   

18.
Modeling Study of Aerosol Indirect Effects on Global Climate with an AGCM   总被引:3,自引:0,他引:3  
Aerosol indirect effects (AIEs) on global climate were quantitatively investigated by introducing aerosol-cloud interaction parameterizations for water stratus clouds into an AGCM (BCC AGCM2.0.1), which was developed by the National Climate Center of the China Meteorological Administration. The study yielded a global annual mean of -1.14 W m-2 for the first indirect radiative forcing (IRF), with an obvious seasonal change. In summer, large forcing mainly occurred in mid to high latitudes of the Northern Hem...  相似文献   

19.
The optical and radiative properties of aerosols during a severe haze episode from 15 to 22 December 2016 over Beijing, Shijiazhuang, and Jiaozuo in the North China Plain were analyzed based on the ground-based and satellite data, meteorological observations, and atmospheric environmental monitoring data. The aerosol optical depth at 500 nm was < 0.30 and increased to > 1.4 as the haze pollution developed. The Ångström exponent was > 0.80 for most of the study period. The daily single-scattering albedo was > 0.85 over all of the North China Plain on the most polluted days and was > 0.97 on some particular days. The volumes of fine and coarse mode particles during the haze event were approximately 0.05–0.21 and 0.01–0.43 μm3, respectively—that is, larger than those in the time without haze. The daily absorption aerosol optical depth was about 0.01–0.11 in Beijing, 0.01–0.13 in Shijiazhuang, and 0.01–0.04 in Jiaozuo, and the average absorption Ångström exponent varied between 0.6 and 2.0. The aerosol radiative forcing at the bottom of the atmosphere varied from –23 to –227,–34 to –199, and –29 to –191 W m–2 for the whole haze period, while the aerosol radiative forcing at the top of the atmosphere varied from –4 to –98, –10 to –51, and –21 to –143 W m–2 in Beijing, Shijiazhuang, and Jiaozuo, respectively. Satellite observations showed that smoke, polluted dust, and polluted continental components of aerosols may aggravate air pollution during haze episodes. The analysis of the potential source contribution function and concentration-weighted trajectory showed that the contribution from local emissions and pollutants transport from upstream areas were 190–450 and 100–410 μg m–3, respectively.  相似文献   

20.
Summary One of the great unknowns in climate research is the contribution of aerosols to climate forcing and climate perturbation. In this study, retrievals from AERONET are used to estimate the direct clear-sky aerosol top-of-atmosphere and surface radiative forcing effects for 12 multi-site observing stations in Europe. The radiative transfer code sdisort in the libRadtran environment is applied to accomplish these estimations. Most of the calculations in this study rely on observations which have been made for the years 1999, 2000, and 2001. Some stations do have observations dating back to the year of 1995. The calculations rely on a pre-compiled aerosol optical properties database for Europe. Aerosol radiative forcing effects are calculated with monthly mean aerosol optical properties retrievals and calculations are presented for three different surface albedo scenarios. Two of the surface albedo scenarios are generic by nature bare soil and green vegetation and the third relies on the ISCCP (International Satellite Cloud Climatology Project) data product. The ISCCP database has also been used to obtain clear-sky weighting fractions over AERONET stations. The AERONET stations cover the area 0° to 30° E and 42° to 52° N. AERONET retrievals are column integrated and this study does not make any seperation between the contribution of natural and anthropogenic components. For the 12 AERONET stations, median clear-sky top-of-atmosphere aerosol radiative forcing effect values for different surface albedo scenarios are calculated to be in the range of −4 to −2 W/m2. High median radiative forcing effect values of about −6 W/m2 were found to occur mainly in the summer months while lower values of about −1 W/m2 occur in the winter months. The aerosol surface forcing also increases in summer months and can reach values of −8 W/m2. Individual stations often have much higher values by a factor of 2. The median top-of-atmosphere aerosol radiative forcing effect efficiency is estimated to be about −25 W/m2 and their respective surface efficiency is around −35 W/m2. The fractional absorption coefficient is estimated to be 1.7, but deviates significantly from station to station. In addition, it is found that the well known peak of the aerosol radiative forcing effect at a solar zenith angle of about 75° is in fact the average of the peaks occurring at shorter and longer wavelengths. According to estimations for Central Europe, based on mean aerosol optical properties retrievals from 12 stations, the critical threshold of the aerosol single scattering albedo, between cooling and heating in the presence of an aerosol layer, is close between 0.6 and 0.76.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号