首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
粤东复杂地形上空的大气湍流强度及扩散参数   总被引:3,自引:0,他引:3  
在具有复杂下垫面的粤东梅州市采用追踪平衡球的双经纬仪观测和美制GILL三轴风速仪观测,分别测定了该地区拉格朗日系统和欧拉系统的湍流脉动量。然后用不同参照系的泰勒公式,分别计算出大气的水平和垂直的湍流强度及扩散参数,并与PG法之计算值和BNL实验结果比较,发现距地面100m以上高空在各类稳定度层结条件下大气扩散参数均比PG值和BNL值偏大。  相似文献   

2.
The SF6 gas tracer observations for puffs released near the ground during the Joint Urban 2003 (JU2003) urban dispersion experiment in Oklahoma City have been analysed. The JU2003 observations, at distances of about 100–1,100 m from the source, show that, at small times, when the puff is still within the built-up downtown domain, the standard deviation of the concentration time series, σt, is influenced by the initial puff spread due to buildings near the source and by hold-up in the wakes of large buildings at the sampler locations. This effect is parameterised by assuming an initial σto of about 42 s, leading to a comprehensive similarity formula: σt = 42 + 0.1t. The second term, 0.1t, is consistent with an earlier similarity relation, σt = 0.1t, derived from puff observations in many experiments over rural terrain. The along-wind dispersion coefficient, σx, is assumed to equal σt u, in which u is the puff speed calculated as the distance from the source to the sampler, x, divided by the time after the release that the maximum concentration is observed at the sampler. σx can be expressed as σx = σxo + 0.14x, with the initial σxo of 45 m. This initial σxo agrees with the suggestion of an initial plume spread of about 40 m, made by McElroy and Pooler from analysis of the 1960s’ St. Louis urban dispersion experiment. The puff speeds, u, are initially only about 20% of the observed wind speed, averaged over about 80 street-level and rooftop anemometers in the city, but approach the mean observed wind speed as the puffs grow vertically. The scatter in the σt data is about ± a factor of two or three at any given travel time. The maximum σt is about 250 s, and the maximum duration of the puff over the sampler, Dt, sometimes called the retention time, is about 1,100 s or 18 min for these puffs and distances.  相似文献   

3.
The stability of large-scale horizontal motion in the atmosphere is discussed in this paper by using qualitative analysis theory of non-linear ordinary differential equations. Both the non-linear distribution of basic Zephyr flow and the variation of geostrophic vorticity along the latitude (f=f0 + βδy ) are all included in this paper's mathematical model so as to analogue the background field of large-scale horizontal air motion more really in the rotating reference frame of the earth. Some significant results are drawn out from this paper and the conclusions of Li(1986)'s and Wan et al.(1990)'s are extended widely.  相似文献   

4.
A laboratory study of scalar diffusion in the convective boundary layer has found results that are consistent with a 1999 large-eddy simulation (LES) study by Jonker, Duynkerke and Cuijpers. For bottom-up and top-down scalars (introduced as ‘infinite’ area sources of passive tracer at the surface and inversion, respectively) the dominant length scale was found to be much larger than the length scale for density fluctuations, the latter being equal to the boundary-layer depth h. The variance of the normalized passive scalar grew continuously with time and its magnitude was about 3–5 times larger for the top-down case than for the bottom-up case. The vertical profiles of the normalized passive scalar variance were found to be approximately constant through the convective boundary layer (CBL) with a value of about 3–8c*2 for bottom-up and 10–50c*2 for top-down diffusion. Finally, there was some evidence of a minimum in the variance and dominant length scale for scalar flux ratios (top-down to bottom-up flux) close to −0.5. All these convection tank results confirm the LES results and support the hypothesis that there is a distinct difference in behaviour between the dynamic and passive variables in the CBL.  相似文献   

5.
The purpose of this study was to develop a diffusion model for a continuous point source which takes into account the increase of wind speed with height, and to compare this model with short-range diffusion experiments. The main problem was to find a good expression for the vertical diffusion coefficient. It turned out that good agreement between theory and experiment could only be obtained by introducing a settling speed W for the tracer combined with a conventional expression for the vertical diffusion (K(Z) = K 0Z1−p). An empirical relation was found between K 0 and τ vU and between W and bar σ vU2.  相似文献   

6.
The effect of topographical slope angle and atmospheric stratification on turbulence intensities in the unstably stratified surface layer have been parameterized using observations obtained from a three-dimensional sonic anemometer installed at 8 m height above the ground at the Seoul National University (SNU) campus site in Korea for the years 1999–2001. Winds obtained from the sonic anemometer are analyzed according to the mean wind direction, since the topographical slope angle changes significantly along the azimuthal direction. The effects of the topographical slope angle and atmospheric stratification on surface-layer turbulence intensity are examined with these data. It is found that both the friction velocity and the variance for each component of wind normalized by the mean wind speed decrease with increase of the topographical slope angle, having a maximum decreasing rate at very unstable stratification. The decreasing rate of the normalized friction velocity (u * /U) is found to be much larger than that of the turbulence intensity of each wind component due to the reduction of wind shear with increase in slope angle under unstable stratification. The decreasing rate of the w component of turbulence intensity (σ w /U) is the smallest over the downslope surface whereas that of the u component (σ u /U) has a minimum over the upslope surface. Consequently, σ w /u * has a maximum increasing rate with increase in slope angle for the downslope wind, whereas σ u /u * has its maximum for the upslope wind. The sloping terrain is found to reduce both the friction velocity and turbulence intensity compared with those on a flat surface. However, the reduction of the friction velocity over the sloping terrain is larger than that of the turbulence intensity, thereby enhancing the turbulence intensity normalized by the friction velocity over sloping terrain compared with that over a flat surface.  相似文献   

7.
A large-eddy simulation (LES) model, using the one-equation subgrid-scale (SGS) parametrization, was developed to study the flow and pollutant transport in and above urban street canyons. Three identical two-dimensional (2D) street canyons of unity aspect ratio, each consisting of a ground-level area source of constant pollutant concentration, are evenly aligned in a cross-flow in the streamwise direction x. The flow falls into the skimming flow regime. A larger computational domain is adopted to accurately resolve the turbulence above roof level and its influence on the flow characteristics in the street canyons. The LES calculated statistics of wind and pollutant transports agree well with other field, laboratory and modelling results available in the literature. The maximum wind velocity standard deviations σ i in the streamwise (σ u ), spanwise (σ v ) and vertical (σ w ) directions are located near the roof-level windward corners. Moreover, a second σ w peak is found at z ≈ 1.5h (h is the building height) over the street canyons. Normalizing σ i by the local friction velocity u *, it is found that σ u /u * ≈ 1.8, σ v /u * ≈ 1.3 and σ w /u * ≈ 1.25 exhibiting rather uniform values in the urban roughness sublayer. Quadrant analysis of the vertical momentum flux u′′w′′ shows that, while the inward and outward interactions are small, the sweeps and ejections dominate the momentum transport over the street canyons. In the x direction, the two-point correlations of velocity R v,x and R w,x drop to zero at a separation larger than h but R u,x (= 0.2) persists even at a separation of half the domain size. Partitioning the convective transfer coefficient Ω T of pollutant into its removal and re-entry components, an increasing pollutant re-entrainment from 26.3 to 43.3% in the x direction is revealed, suggesting the impact of background pollutant on the air quality in street canyons.  相似文献   

8.
An analysis was performed of the turbulent data obtained from Yucheng experimental station in the Shandong Province in 1984. [t is shown that at variant wind speed, the spectra of streamwise velocity remain similar and the intensity of wind fluctuations is proportional to wind speed in the downwind area of shelter belt. Therefore, we may decide the similarity of wind fluctuations by a speed scale and a length scale which is not correlated with stability, σu /V0 = F(X / H). The -5/3 power range of temperature spectra extends to lower frequency. The variation of ratio σ0 /T. with stability becomes σ0 / T . = C(X / H)( - Z / L)-1/3 . There is not such an extension of -5 / 3 power range in the humidity spectra.  相似文献   

9.
    
It is essential to learn the temporal and spatial concentration distributions and variations of seeding agents in cloud seeding of precipitation enhancement. A three–dimensional puff trajectory model incorporating a mesoscale nonhydrostatic model has been formulated, and is applied to simulating the transporting and diffusive characteristics of multiple line sources of seeding agents within super–cooled stratus. Several important factors are taken into consideration that affect the diffusion of seeding materials such as effects of topography and vertical wind shear, temporal and spatial variation of seeding parameters and wet deposition. The particles of seeding agents are assumed to be almost inert, they have no interaction with the particles of the cloud or precipitation except that they are washed out by precipitation. The model validity is demonstrated by the analyses and comparisons of model results, and checked by the sensitivity experiments of diffusive coefficients and atmospheric stratification. The advantage of this model includes not only its exact reflection of heterogeneity and unsteadiness of background fields, but also its good simulation of transport and diffusion of multiple line sources. The horizontal diffusion rate and the horizontal transport distance have been proposed that they usually were difficult to obtain in other models. In this simulation the horizontal diffusion rate is 0.82 m s−1 for average of one hour, and the horizontal average transport distance reaches 65 km after 1 h, which are closely related to the background fields.  相似文献   

10.
The propagation of disturbances excited by low-frequency oscillations in the tropics is investigated by applying the theory of wave packet dynamics. For simplicity, a linearized barotropic model is adopted and the zonal circulation is taken as basic current. Suppose that the disturbances or waves are superimposed on jet-like westerly basic cur-rent and excited by the forcing in the tropics. We have (1) only the eastward propagating (m>0, n>0 and σ>0) low-frequency disturbances and the stationary (σ = 0) waves can propagate into the middle and high latitudes in the Northern Hemisphere; the others, such as the westward propagating low-frequency wave (m>0, n<0, σ<0) and the high-frequency waves, are restricted only in the vicinity of source region; (2) a stationary wave (σ = 0) reaches a given latitude even more quickly than some low-frequency ones (σ>0) due to the fact that the group velocity of stationary wave is larger; (3) there is a whole wave train excited by the forcing in the tropics and extended into the middle and high latitudes, if the amplitude of the source is independent on time, especially, the low-frequency wave (σ > 0) is of travelling type propagating along the ray; (4) if the source lasts only for an interval of time, namely, its amplitude also has the character of low-frequency oscillation, the excited wave train is not always a whole one, but is restricted in the vicinity of source region in the beginning, extended from the source region to the middle and high latitudes in its saturated stage, after that it gradually becomes weaker and weaker and is detectable only in some area at high latitude, and eventually disappears. Undoubtedly, case (4) is closer to the reality, even though case (3) gives a more impressive wavy pattern.  相似文献   

11.
Solutions to the sheared Fickian advection–diffusion equation in a half-space with arbitrary surface source are given using a ‘transfer function’ method. The method uses Fourier transforms in two horizontal coordinates and time, along with complex Airy functions in the vertical coordinate. Surface deposition and tracer decay are included in the formulation. ‘Puff’ and steady ‘plume’ solutions are compared with Saffman’s moment formulae. The inclusion of a decay rate factor (α) allows the average tracer age to be computed from steady state solutions for concentration C(x, y, z) according to Age = − dln C/. A comparison between the puff centroid formula of Saffman and plume Age computations confirms that shear causes tracer puffs to accelerate horizontally as they diffuse upward into a different wind regime. In forward shear, tracer ages are younger than in unsheared flow but the range of ages is greater due to the existence of a high fast pathway and a low slow pathway. In reverse shear, concentrations, ages and the range of ages all rise markedly near the source. Large tracer age suggests that some tracer has taken a very distant path involving a low-level outbound trip and a high-level return. The effect of surface deposition is to reduce the influence of the distant path. In the case of reverse shear, deposition makes the tracer younger. In a turning wind, the time needed to reach a given radius increases due to the curved path of the plume.  相似文献   

12.
Diurnal variations of the standard deviation σ g of the refractive index vertical gradient g n in the lower 300-meter atmospheric layer are first analyzed for the vast area of Eastern Siberia and Far East by using observation data obtained from 30 aerological stations for 10 years. This statistics is most variable in the Far North areas in the spring-summer period. The diurnal cycle of σ g is most diverse (in terms of both its character and amplitude) in the moderate climatic belt of the territory under study. Here, the maximum diurnal variability of σ g is observed in the summer and then, in the winter time. Diurnal variations of σ g in this region have significant amplitudes that are in many regions comparable with the amplitudes of its interseasonal variations.  相似文献   

13.
Evidence is presented that in the stable atmospheric surface layer turbulent fluxes of heat and momentum can be determined from the standard deviations of longitudinal wind velocity and temperature, σ u and σ T respectively, measured at a single level. An attractive aspect of this method is that it yields fluxes from measurements that can be obtained with two-dimensional sonic anemometers. These instruments are increasingly being used at official weather stations, where they replace the standard cup anemometer–wind vane system. With methods such as the one described in this note, a widespread, good quality, flux network can be established, which would greatly benefit the modelling community. It is shown that a ‘variance’ dimensionless height (ζ σ) defined from σ u and σ T is highly related to the ‘conventional’ dimensionless stability parameter ζ=z/L, where z is height and L is the Obukhov length. Empirical functions for ζ σ are proposed that allow direct calculation of heat and momentum fluxes from σ u and σ T. The method performs fairly well also during a night of intermittent turbulence.  相似文献   

14.
Measured spectra ofθ x,θ y,θ z, the derivatives of temperature in streamwise, lateral and vertical directions, respectively, indicate that the spectral densities ofθ z andθ y are nearly similar but significantly different from the spectral density ofθ x. The high-frequency parts of the three spectra satisfy, in a qualitative sense, local isotropy requirements. In the high-frequency end of the inertial subrange, the relative behaviour of spectra ofθ x,θ y andθ z is also consistent with local isotropy.  相似文献   

15.
On the basis of 10-year series of observations at 30 stations in Eastern Siberia and Far East, features are analyzed of annual and diurnal changes in vertical gradient of refractive index g n , and of its rms deviation σ in the lower 900-m layer of the atmosphere. It is found that the main type of annual variations of g n and σ is represented by the annual cycle with two maxima (in winter and summer) and two minima (in spring and fall). The annual cycle with a single high winter maximum of g n and σ is, for the first time, revealed in the northeastern border region of Russia. The largest amplitude of g n annual cycle is observed in the northeastern part of the area. The diurnal variations of g n exhibit maximum amplitudes in spring and summer; diurnal changes of σ are not pronounced but in several stations in the northern part of the area.  相似文献   

16.
Monin-Obukhov Functions for Standard Deviations of Velocity   总被引:2,自引:2,他引:0  
The origins of Monin-Obukhov similarity theory (MOST) are briefly reviewed, as a context for the analysis of signals from sonic anemometers operating in the surface layer over a Utah salt flat. At this site (over the interval of these measurements) the neutral limit for the normalized vertical velocity standard deviation (σ w /u *) deviates markedly from what has generally been regarded as the standard value (i.e. about 1.3), suggesting (since others have also reported such deviations) that this Monin-Obukhov constant is not, in fact, universal. New (but tentative) formulae are suggested for σ w and for the longitudinal standard deviation σ u .  相似文献   

17.
The heterogeneous interaction of nitrogen dioxide with ammonium chloride was investigated in a molecular diffusion tube experiment at 295–335 K and interpreted using Monte Carlo trajectory calculations. The surface residence time (τsurf) of NO2 on NH4Cl is equal to 15 μs at 295 K, increases with temperature up to 323 K (τsurf = 45 μs) and probably decreases beyond 323 K. The same experiment also yields uptake coefficients, γ, which are derived from the absolute number of surviving molecules effusing out of the diffusion tube. The rate of uptake of NO2 on NH4Cl followed a rate law first order in [NO2] and the uptake coefficient γ is equal to 7 × 10−5 at 295 K, increases with temperature up to 323 K (γ = 2.1 × 10−4) and probably decreases beyond 323 K. Nitrous acid, water and nitrogen were detected as products. From these products, it is concluded that the reaction of NO2 with NH4Cl is a reverse disproportionation reaction where two moles of NO2 result in ammonium nitrite, NH4NO2, as an intermediate, and nitryl chloride, NO2Cl. NH4NO2 decomposes in two pathways, one to nitrous acid, HONO and NH3, the other to nitrogen and water. The branching ratio for the production of HONO + NH3 to that of N2 + H2O is approximately 20 at 298 K and increases with increasing temperature.  相似文献   

18.
北京不同区域气溶胶辐射效应   总被引:1,自引:0,他引:1       下载免费PDF全文
采用大气辐射传输模式SES2以及2013年1月—2015年10月欧洲中期天气预报中心细网格再分析资料计算了北京地区4个观测站地面接收的短波辐射通量,分析了晴天和云天北京城郊气溶胶对总辐射的定量影响时空变化特征。结果表明:北京城区和近郊区气溶胶对总辐射的影响约为远郊区的2倍,北京南部和西部气溶胶对辐射的影响较大,晴天和云天北京城区和近郊区气溶胶对总辐射的削减值分别为146.23~180.99 W·m-2和202.11~217.02 W·m-2,晴天总辐射削减空间差异较大;秋冬季气溶胶对总辐射的影响明显大于春夏季,北京市观象台秋冬季气溶胶对总辐射的削减作用最大可达60%,较春夏季高10%~20%;北京城郊总辐射和直接辐射削减率与气溶胶光学厚度变化均呈线性关系,近地面PM2.5浓度对辐射的影响不容忽视。  相似文献   

19.
An Analysis of Sonic Anemometer Observations In Low Wind Speed Conditions   总被引:2,自引:1,他引:1  
When the wind speed decreases below a certain value (1–2 m s-1) meandering (low frequency horizontal wind oscillations) starts to prevail. In these conditions it becomes difficult to define a precise mean wind direction and to estimate the airborne dispersion. To study the wind and turbulence characteristics during meandering, two sonic anemometer datasets, containing hourly wind observations, were analysed: the first one, lasting 1 year, was recorded in complex terrain (Graz, Austria) and the second one, lasting about 1month, was recorded in a rather flat area (Tisby, Sweden). It was found that meandering seems to exist under all meteorological conditions regardless of the stability or wind speed and it was confirmed that meandering sets a lower limit for the horizontal wind component variances. Further, it was found that the autocorrelation functions of the horizontal wind components, computed for the low wind cases, show an oscillating behaviour with the presence of large negative lobes. Two different relationships from the literature, and relevant to these oscillatory aspects, were fitted to the data. They contain two parameters: one associated and relevant to the classical integral time scale and the second with meandering occurrence. Based on these relationships, expressions for the mean square displacement of particles y2(t) were also derived.  相似文献   

20.
Vertical dispersion in the neutral surface layer is investigated using a Markov Chain simulation procedure. The conceptual basis of the procedure is discussed and computation procedures outlined. Wind and turbulence parameterizations appropriate to the neutral surface layer are considered with emphasis on the Lagrangian time scale. Computations for a surface release are compared with field data. Good agreement is found for the variation of surface concentration and cloud height to distances 500 m downwind of the source. The functional form of the vertical concentration profile is examined and an exponential with exponent ∼1.6 is found to give the best fit with simulations. For elevated releases, it is demonstrated that an initial dip of the mass mean height from the simulation can be normalized for various release heights using a non-dimensionalized downwind coordinate incorporating advective wind speed and wind shear. The vertical distribution standard deviation (σz), as employed in Gaussian models, shows a fair degree of independence with source height but close examination reveals an optimum source height for maximum σz at a given downwind distance,x. This source height increases with downwind distance. Also the simulations indicate that vertical wind shear is more important than vertical variation of Lagrangian time scale close to the source, with a reverse effect farther downwind.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号