首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
    
The wave rays and their seasonal variation of stationary and low-frequency Rossby waves are studied by using the Runge—Kutta scheme. The results show that for stationary waves the rays can reach lower latitudes in winter, and are limited in higher latitudes in summer. The main differences between the stationary and low-frequency wave rays are that low—frequency waves can propagate across the equator and the easterlies will not be an obstacle on their propagation. It explained to some extent the interaction of disturbances between the Northern and Southern Hemispheres. The lower wave frequencies and the stronger easterly flow are, the more difficult low—frequency waves will be to propagate across the equator. The waves with 20-day period are easier to propagate across the equator than that with 50—day period. The winter is the most favorable season for low—frequency waves to propagate into another hemisphere.  相似文献   

2.
Early theoretical analyses indicated that the tropics and extratropics are relatively independent due to the existence of critical latitudes. However, considerable observational evidence has shown that a clear dynamical link exists between the tropics and midlatitudes. To better understand such atmospheric teleconnection, several theories of wave energy propagation are reviewed in this paper: (1) great circle theory, which reveals the characteristics of Rossby waves propagating in the spherical atmosphere; (2) westerly duct theory, which suggests a “corridor” through which the midlatitude disturbances in one hemisphere can propagate into the other hemisphere; (3) energy accumulation-wave emanation theory, which proposes processes through which tropical disturbances can affect the atmospheric motion in higher latitudes; (4) equatorial wave expansion theory, which further explains the physical mechanisms involved in the interaction between the tropics and extratropics; and (5) meridional basic flow theory, which argues that stationary waves can propagate across the tropical easterlies under certain conditions. In addition, the progress made in diagnosing wave-flow interaction, particularly for Rossby waves, inertial-gravity waves, and Kelvin waves, is also reviewed. The meridional propagation of atmospheric energy exhibits significant annual and interannual variations, closely related to ENSO and variation in the westerly jets and tropical upper-tropospheric troughs, amongst others.  相似文献   

3.
The wave rays and their seasonal variation of stationary and low-frequency Rossby waves are studied by using the Runge-Kutta scheme. The results show that for stationary waves the rays can reach lower latitudes in winter, and are limited in higher latitudes in summer. The main differences between the stationary and low-frequency wave rays are that low-frequency waves can propagate across the equator and the easterlies will not be an obstacle on their propagation. It explained to some extent the interaction of disturbances between the Northern and Southern Hemi-spheres. The lower wave frequencies and the stronger easterly flow are, the more difficult low-frequency waves will be to propagate across the equator. The waves with 20-day period are easier to propagate across the equator than that with 50-day period. The winter is the most favorable season for low-frequency waves to propagate into another hem-isphere.  相似文献   

4.
早期的理论分析认为大气中临界纬度的存在使得热带-热带外的大气活动互不影响。然而,大量的观测事实表明中低纬度大气运动存在着明显的动力联系。为了帮助人们更好地理解大气中的遥相关现象,在大量文献的基础上,综述了几种波能量传播理论:(1) 大圆理论指出了罗斯贝波在球形大气中的传播特征;(2) 西风通道理论发现了中纬度瞬变扰动越赤道传播的“走廊”;(3) 能量堆积-波列发射理论揭示了热带扰动影响到更高纬度大气活动的可能过程;(4) 赤道波侧向膨胀理论则利用转折纬度的概念更进一步解释了这种中低纬度大气相互作用的物理机制;(5) 经向基本流理论则认为在一定的条件下定常波可以穿过热带东风带传播到另一半球。此外,文中还回顾了在波-流相互作用诊断方面的研究进展,尤其是关于罗斯贝波、惯性重力波和赤道开尔文波。大气能量的经向传播具有显著的年变化和年际变化,这与ENSO、西风急流、大洋中部槽等的变化密切相关。  相似文献   

5.
By using the upper-wind data from July 1980 to June 1983,the variations of the low-frequency oscillation(LFO) in the atmosphere before and during 1982 El Nino have been investigated.Before the El Nino,the LFO propagates from west to east over the equator of the Eastern Hemisphere and from east to west over 20°N.The eastward propagating LFO over the equator consists of zonal wavenumber 1 propagating eastward and zonal wavenumber 2 with a character of stationary wave.The oscillation of zonal wavenumber 2 can modulate the oscillation strength.After the onset of the El Nino,the propagating directions of the LFO over the equator and 20°N of the Eastern Hemisphere change to be westward and eastward,respectively.The LFO over the western Pacific weakens rapidly and one coming from middle and high latitudes propagates to the equator.From the phase compositions of streamline fields for the zonal wavenumber 1 of equatorial westward propagatirg LFO,it is found that the atmospheric heat source in the equator of the eastern Pacific(EEP)excites a series of the equatorial cyclones and anticyclones which move northward and westward and form the westward propagating LFO over the equator.With the wavelength of 20000km,this kind of equatorial wave is similar to the mixing Rossby-gravity wave.In its westward and northward movement,the circulation in East Asia is modified.This may be the mechanism of the influence of El Nino on the climate of China.  相似文献   

6.
Monthly or seasonally mean anomalies of large-scale atmospheric circulation are better represented by wave packets or their combination. Both qualitative and quantitative analyses of equations of wave packet dynamics, which are obtained by the use of WKB approximation, are very helpful for the understanding of structure, formation and propagation of stationary and quasi-stationary planetary wave packet patterns in the atmosphere. Indeed, these equations of wave packet dynamics can be directly solved by the method of characteristic lines, and the results can be simply and clearly interpreted by physical laws. In this paper, a quasi-geostrophic barotropic model is taken for simplicity, and the wave packets superimposed on several ideal profiles of the basic current and excited by some ideal forcings are investigated in order to make comparison of the accuracy of calculation with the analytical solution. It is revealed that (a) the rays of stationary planetary wave packet do not coincide with but go away from the great circle with significant difference if the shear of the basic zonal flow is not too small; (b) being superimposed on a westerly jet flow with positive shear (Uλ/y>0), the stationary wave packets excited by low-latitudinal forcing are first intensified during their northeastward propagation in the Northern Hemisphere, then reach their maximum of amplitude at some critical latitude, and after that weaken again; (c) the connected line of extremes (the positive and negative centres) of wave packet does not coincide with but crosses the ray by an angle, the larger the scale of external forcing, the larger the angle; and (d) the whole pattern of a trapped stationary wave packet is complicated by the interference between the incident and reflected waves.  相似文献   

7.
朱福康 《气象学报》1964,34(1):31-40
本文对北半球多年月平均500毫巴图上60°N和30°N纬圈的高度和纬圈平均的经向运动动能进行了波谱分析,探讨了前3个波幅和位相角的季节变化,以及在高低纬度之间的差异。主要结果如下:1位势场的高度主要贡献,集中在准静止长波范围内,并具有明显的季节变化。2波数为1的波在高低纬度性质有显著的不同,其分界线大约在50°-60°N之间。此外,准静止的长波愈向低纬度去逐渐有向西偏移的现象。例如,在30°N上准静止的长波比60°N上要偏西(1/4)-(1/2)波长。360°N纬圈平均的经向运动动能主要部分亦集中在准静止长波范围内。虽然峰值有明显的季节变化,但最大的极值都出现在波数n=2-4之间。30°N纬圈平均的经向运动动能谱有着明显的季节变化,大致可分成如下3个类型:(1)冬季型:纬圈平均的经向运动动能谱存在着两个极值,最大的极值稳定于准静止长波范围内(n=3附近),次极植位于移动性行星波范围内(n=5-8)。(2)夏季型:纬圈平均的经向运动动能谱只有一个极值,稳定于波数为6-7的波内。(3)过渡型:纬圈平均的经向运动动能谱分布较平坦,没有稳定的极值存在。  相似文献   

8.
The ideas of ray tracing from geometrical optics and wave propagation in a slowly varying medium are applied to Rossby waves propagating in a barotropic atmosphere.The propagation of low-frequency Rossby waves in a zonally symmetric basic state is compared with that for stationary waves presented by Hoskins and Karoly (1981). These ideas are then used to study the propagation of Rossby waves in a basic state with zonally varying middle latitude or low latitude jets. Conditions which allow cross-equatorial wave propagation are presented. For a zonally varying middle latitude jet, there is weak wave convergence in regions of decreasing jet speed, However, this is not sufficient to explain the enhanced wave amplitude found in numerical-model experiments using a zonally varying basic state.  相似文献   

9.
本文采用一个关于大气定常波的16层线性化原始方程三维谱模式,研究了冬季平流层大气对于对流层各种定常大尺度热力强迫的响应。研究结果表明,对流层中的热力强迫作用对于冬季平流层中垂直向上传播的行星定常波的维持有显著的贡献,平流层中强迫扰动的水平结构及其与对流层中扰动的差异与加热场的垂直结构有密切的关系。相对于强度和空间结构相同的强迫源而言,中纬强迫对于平流层的作用比低纬强迫更为显著。  相似文献   

10.
In this paper, five-year simulated data from a low-resolution global spectral model with triangular trunca-lion at wavenumber 10 are analyzed in order to study dynamical features and propagation characteristics ofintraseasonal oxillations over the mid-latitudes and the tropical atmosphere. The simulations show that thereis the 30-50 day periodic oscillation in the low-resolution spectral model without non-seasonal external forcing,and spatial scale of the intraseasonal oscihations is of the globe .Further analysis finds that propagation charac-ters of intraseasonal oscillations over the mid-latitudes and the tropics are different. The 30-50 day oscillationover the tropics exhibits structure of the velocity potential wave with wavenumber 1 in the latitudinal and thecharacter of the traveling wave eastward at speed of 8 longitudes/day. However, the 30-50 day oscillationsin mid-latitude atmosphere exhibit phase and amplitude oscillation of the standing planetary waves and theyare related to transform of teleconnection patterns over the mid-latitudes. The energy is not only transferredbetween the tropics and the middle-high latitudes, but also between different regions over the tropics. Based on the analysis of 5-year band pass filtered data from a 5-layer global spectral model of Jow-ordetwith truncated wavenumber l0,investigation is done of the source of intraseasonal oscillations in the extratropicalmodel atmosphere and its mechanism. Results show that (1) the convective heat transferred eastward alongthe equator serves as the source of the intraseasonal oxillation both in the tropical and the extratropical atmos--phere; (2) the velocity-potential wave of a zonal structure of wavenumber 1 gives rise to oxillation in divergentand convergent wind fields of a dipole-form as seen from the equatorial Indian Ocean to the western Pacificduring its eastward propagation, thus indicating the oscillation in the dipole-form heat soure:e/sink pattertl; (3)the tropical heat-source oscillation is responsible for the variation in phase and intensity of the extratropicalstationary wave train, and the interaction between the oscillating low-frequency inertial gravity and stationaryRossby modes that are probably mechanisms for the oscillations ip the middle-high latitudes.  相似文献   

11.
The three-dimensional propagations of the forced stationary planetary waves in a realistic summer current, in which the vertical and horizontal wind shears are included, are discussed by using the refractive index squared of waves in a spherical coordinate system.The results show that there is no polar wave guide in stationary planetary wave propagations in summer. Thus, stationary planetary waves cannot propagate into the stratosphere. However, there are a wave guide pointing from the subtropics toward middle and high latitudes in the troposphere and another wave guide pointing from the lower troposphere at middle latitudes toward the upper troposphere near 30°oN in the forced stationary planetary wave propagations.A linearized, steady-state, quasi-geostrophic 34-level spherical coordinate model with Rayleigh friction and Newtonian cooling, horizontal kinematic thermal diffusivity is used to simulate the wave guides of three-dimensional propagations of stationary planetary waves in summer.  相似文献   

12.
线性、定常、多层半球谱模式模拟结果表明,在东亚纬向气流下,青藏高原能在平流层激发出强大的1波扰动,脊槽分别位于太平洋和大西洋上空。在北美纬向气流下,落基山在平流层激发的1波很弱。观测资料计算指出,对流层行星1波很难通过北美对流层顶上传,但却能自由穿过东亚高纬度地区的对流层顶向平流层传播。北美地形所激发的波动在上传过程中均折向低纬传播。青藏高原所激发的行星1波和2波在上传过程中有分支:折向低纬的一支主要局限在对流层中;折向高纬的一支进入平流层。模拟和分析证明,这些差异是北半球两大地形不同的动力作用的结果。  相似文献   

13.
Summary Lower tropospheric (1000–500) hPa kinetic energy (KE), temporal variations of KE and nonlinear KE transfer of rotational and divergent flows and energy conversion between them, partitioning further into stationary and transient components in the Fourier spectral domain and the mechanism for the evolution of significant transient waves for the month July 1979 in the latitudinal belt 10° S–30° N are studied.Divergent zonal and eddy KE show their maxima at the lowest level 1000 hPa. Lower tropospheric monsoon motion provides a non-divergent level close to 850 hPa. The daily flow patterns bear little resemblence to the climatology over tropics at 500 hPa. Although the transient mode of synoptic scale waves is stronger than that of planetary scale waves they are comparable. Analysis of energetics over global tropics can get signature of transient activities embedded in the large scale system. Summer momentum flux in the lower troposphere is essentially associated with stationary planetary and transient synoptic scale waves. Waves 1, 3 and 6 are the most preferred transient waves. Divergent to rotational KE conversion is the most dominating mechanism for the maintenance of planetary and synoptic scale waves. All categories of waves contribute towards the maintenance of zonal flows. The primary source of energy for transient synoptic scale waves is the transient divergent rotational KE transfer whereas the interaction between zonal stationary and transient wave is likely to be secondary source. Transient KE and all transient interactions, stationary KE and all stationary interactions are found to be strongest at 500 hPa and 850 hPa respectively. Growth and decay of transient waves 1 and 3 are mainly controlled by divergent-rotational KE conversions whereas those of transient wave 6 are controlled by KE transfer due to zonal-wave interaction.With 13 Figures  相似文献   

14.
    
The effects of oceanic forcing on the atmospheric low-frequency wave (LFW for short) in the tropics are analyzed, where ocean and atmosphere are taken as an independent system, respectively. Here oceanic effects are parameterized as evaporation-wind feedback (EWF for short) and forcing of SST. Under the modulation of EWF, forcing of SST plays a different role from that without EWF, So LFWs are diabatic waves, forced by the interactions of multiple factors, in the tropics. This paper was supported by “ First Institute of Oceanic Sciences, State Oceanic Administration, State Key Laboratory of Geophysical Fluid Dynamics and Numerical Modeling”.  相似文献   

15.
黄荣辉 《气象学报》1985,43(4):410-423
本文首先从理论上讨论了北半球冬季低纬度强迫源与中纬度强迫源强迫所产生的准定常行星波在实际基本气流中传播路径及其振幅分布的差异,指出冬季低纬度热源异常将对北半球中、高纬度对流层大气环流的异常起很大影响,而中纬度热源异常将对平流层环流异常起很大作用。 本文应用一个包括Rayleigh摩擦、Newton冷却及水平涡旋热力扩散准地转34层球坐标模式分别计算了冬季低纬度热源异常与中纬度热源异常所造成北半球扰动系统的异常情况,计算结果表明了冬季低纬度热源异常将对中、高纬度对流层大气环流异常起很大作用,热带太平洋上空热源异常将产生PNA型环流异常。  相似文献   

16.
1950年平均经圈环流与角动量的平衡   总被引:4,自引:2,他引:4  
叶笃正  邓根云 《气象学报》1956,27(4):307-321
本文利用了Buch和Starr与White所计算的1950年各纬度上空的平均经向风速([V]),绘制了子午面上的平均环流(全年:图1,冬季:图2,夏季:图3),图中显示出三个环型(cell),低纬度和高纬度的两个正环型与中纬度的逆环型。 1950年平均西风急流的位置正好处于中纬度的逆环流之中。全年平均的赤道辐合线位于北纬5°左右。自夏至冬三个环型均向北移,冬季半球Hadley环型伸向夏季半球去。三个环型的强度都是冬季大。 对于1950年北半球10°—70°的角动量平衡也作了分析(图4),并绘制了这个空间中角动量输送流线图(图5),其中应该提出,就是通过东西风的界面流线是铅直的,也就是总的来说,在东风带里产生的角动量不是在水平方向上输送到西风带里去,而是在铅直方向上输送到低纬度的高空西风里去,再由那里在水平方向上送到中高纬度去。 最后对于平均纬圈环流的维持也作了讨论,结论是:在中高纬度大型扰动起着主导作用,在低纬度则平均经圈环流是重要的。  相似文献   

17.
In order to investigate the effect of the factors in tower latitudes on Meiyu/Baiu front,a diagnostic analysis for the two cases during June to July of 1985 and 1986 was examined.We found that (1) when the tropical convective activity moves westward to 10.5-15.5'N/140°E from east side of 10.5-15.5°N/160°E,the northward shifts of the Meiyu/Baiu rain belt occurs;(2)the main factor which results in the northward and southward shifts of Meiyu/Baiu rain belt is thought as the 8,18 and 30 day oscillations of the tropical convective activity around West Pacific.Meanwhile,the wave train propagating from Lake Baikal via Okhotsk Sea to the tropics could sometimes shift Baiu rain belt southward;(3) the onsets of Meiyu in China of both cases tend to take place just when the convective activity around lower latitudes moves westward through about 140°E with the 8,18 and 30 day oscillation periods firstly coming to June.  相似文献   

18.
赤道地区向西传播的40天周期低频波   总被引:4,自引:0,他引:4  
本文用滤波和EOF位相合成技术对1981年7—12月份赤道地区出现的向西传播的40天周期低频波进行了分析。结果认为东太平洋地区从南半球到北半球的越赤道40天周期温度波是产生这种西传波的主要原因。这种波动主要产生于两个源地:一个是赤道150°E附近的对流层下层;另一个是110°W的赤道对流层上层。这两处产生的低频波性质不一样,前者与对流密切相关。通过计算整层积分的非绝热加热Q_1和水汽汇Q_2,结果表明Q_1加热中心在东太平洋也有越赤道传播。在150°E以西Q_2加热中心是向西北传播的,与低频波方向一致,Q_1的传播特征不明显,这说明西太平洋地区的热带对流可能有这种周期振荡。  相似文献   

19.
A set of numerical experiments designed to analyze the oceanic forcing in spring show that the combined forcing of cold (warm) El Ni(n)o (La Ni(n)a) phases in the Ni(n)o4 region and sea surface temperature anomalies (SSTA) in the westerly drifts region would result in abnormally enhanced NorthEast Cold Vortex (NECV) activities in early summer.In spring,the central equatorial Pacific El Ni(n)o phase and westerly drift SSTA forcing would lead to the retreat of non-adiabatic waves,inducing elliptic low-frequency anomalies of tropical air flows.This would enhance the anomalous cyclone-anticyclonecyclone-anticyclone low-frequency wave train that propagates from the tropics to the extratropics and further to the mid-high latitudes,constituting a major physical mechanism that contributes to the early summer circulation anomalies in the subtropics and in the North Pacific mid-high latitudes.The central equatorial Pacific La Ni(n)a forcing in the spring would,on the one hand,induce teleconnection anomalies of high pressure from the Sea of Okhotsk to the Sea of Japan in early summer,and on the other hand indirectly trigger a positive low-frequency East Asia-Pacific teleconnection (EAP) wave train in the lower troposphere.  相似文献   

20.
By use of daily OLR data of eight years (1975—1977,1979—1983),the propagation features of 30—60day low-frequency oscillation (LFO) and its teleconnections are studied.The results are as follows:(1)The LFO is quite active in the regions of the South China Sea,mainland of China and subtrop-ical western-North-Pacific.(2)The zonal propagation direction of LFO is eastward along the equator and gradually changes towestward north of 10°N and south of 10°S.The westward propagation of LFO dominates in the areaof 15°N-30°N,Eastern Hemisphere.(3)In the region of east Asia (120°E),the main meridional directions are northward in tropics andsouthward in high latitudes.These two opposite propagating LFO are merged in the vicinity of subtropics.Sometimes,the northward propagating LFO can penetrate through the subtropics to high latitudes and viceversa.On the average,the northward propagation dominates in summer time.(4)The EOF analysis of the summer data shows that there are two main eiginvector centers of OLR-LFO,one is located over the Bay of Bengal and the other over the tropical western-North-Pacific.Thesign of these two centers are just opposite to each other.It should be noted that on the normal,thesetwo oscillation centers mentioned above coincide with the two strong centers of atmospheric 12eat source insummer.It means that the activities of LFO in the Indian monsoon system and the East Asian monsoonsystem are reverse.For the first component of eiginvector,a belt of LFO with the same sign stretcheswith a SW-NE direction from the tropical center in the western-North-Pacific northwestward,passing bythe point at 15°N,180°E and reaches southwestern states of the United States.To the north and southof this belt,there are other two belts with opposite sign.Again further north and south of them,there areother two belts with the same sign as the first one.Furthermore,to the NW (near Taiwan) and SE (10°S,160°W) of the tropical East Asian center,there is,respectively,another center with opposite sign.Analmost straight line can go through all three centers.The main characteristics of the second,third andfourth components of eiginvector are the same as that of the first one.It indicates that the teleconnectioncentered around the tropical East Asian center of LFO is characterized by a SW-NE oriented wave frontand the energy transport of oscillation from SE to NW.That is to say,the oscillations in the tropicalwestern-North-Pacific may be the source of those in China during summer.We call this teleconnection pat-tern the WPC (western Pacific-China) pattern so as to distinguish from the PNA pattern.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号