首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
一次短时暴雨天气的稳定度和能量参数分析   总被引:3,自引:4,他引:3       下载免费PDF全文
利用常规探空资料,对2006年8月25日发生在郑州市的短时暴雨过程中的稳定度和能量参数进行了诊断分析,结果表明:对流有效位能和深对流指数在暴雨开始前有较明显的增大,且峰值与降水增强时段有6~12 h的提前量;稳定度指数也与短时暴雨的发生、发展有着良好的对应,当测站对流稳定度指数在-10 ℃以下、K指数达到35 ℃以上、A指数值增大到10 ℃以上时,遇有触发机制,极易产生强对流暴雨.  相似文献   

2.
强对流天气前期的层结特征   总被引:1,自引:0,他引:1  
本文根据在皖北和湘中进行的两次预报试验以及其它的探空资料,描述了强对流天气发生前期大气层结的特征。指出在冰雹和雷暴大风发生前期,在低层有一个由层结曲线和露点曲线构成的“喇叭形”,并呈现出很大的对流性不稳定度。而在暴雨发生前期,温度曲线与露点曲线互相紧挨,层结接近中性。沙氏指数与天气的关系较好。对形成冰雹或暴雨需要有适当的0℃层和—20℃层。此外,在暴雨前期低层的位势高度通常有明显的下降。  相似文献   

3.
中国暖季暴雨有显著的对流性特征,但尚不明确对流导致的短时强降雨对不同等级暴雨的贡献程度。利用1951—2019年的逐时降水资料,统计分析了中国两种强度的短时强降雨(小时雨量≥20 mm和小时雨量≥50 mm,分别简称为HR20和HR50)和不同等级暴雨之间的关系,得到了两类短时强降雨对不同等级暴雨的贡献特征。结果显示,短时强降雨发生频率高的暴雨分布区域与暴雨日数多的区域并不一致,在华北南部到黄淮地区和西南地区到华南地区短时强降雨对暴雨的影响最为显著,其超过50%的暴雨中伴随HR20,华北南部和华南中部地区暴雨中发生短时强降雨的占比超过了70%;随着暴雨等级的提升,伴随短时强降雨的比例逐渐增大,尤其HR50的占比增加显著,超60%的特大暴雨中伴有HR50,表明暴雨越强,其对流性越强。在华北南部到黄淮地区、西南地区东部和华南地区,短时强降雨雨量对暴雨雨量的贡献也最大,且随着暴雨等级的提升,这些地区短时强降雨雨量在暴雨总雨量中的占比呈显著增长的趋势,HR50的贡献增幅超过100%;而江淮、江南等地区短时强降雨雨量的贡献较小,随暴雨强度等级的增强其增大程度也相对不明显。此外,伴随有HR20的暴...  相似文献   

4.
寿亦萱  许健民 《气象学报》2007,65(2):160-170
应用常规气象资料与卫星资料相结合的办法,研究了2005年6月10日午后在黑龙江省中东部发生的暴雨中尺度对流系统(MCSs)的大尺度环流背景、大气层结演变特征、下垫面条件以及中尺度对流系统。结果表明:此次暴雨(简称“05.6”东北暴雨)是发生在高空槽东移加深过程中的一次对流天气过程。中尺度对流系统处于前倾疏散的高空槽槽前,高空辐散,低空辐合,为MCS发生提供了有利的大尺度动力条件。暴雨发生前对流层低层有西南—东北走向的湿舌,为暴雨提供了有利的水汽条件。高空干冷平流与低空的暖湿平流形成的差动平流,造成此处大气的层结不稳定度增强。此外,从地面接收到的太阳辐射能量分布情况来看,下垫面不均匀加热引起的热力环流是这次暴雨过程中尺度对流系统发生发展的一个重要的触发机制。研究地面中尺度切变线演变与此次暴雨对流系统发生发展的关系发现,切变线上对流强弱分布是不均匀的,其中在弧形切变线曲率最大处的对流最强,与沙兰河上游暴雨有关的对流云团就出现在这个地区。以上事实表明,地面中尺度切变线可能是此次暴雨发生发展的另一个关键因素,而造成切变线上对流发展不均匀的原因可能和切变线走向与环境风场的配置有较大关系。  相似文献   

5.
地基微波辐射资料在短时暴雨潜势预报中的应用   总被引:3,自引:2,他引:1       下载免费PDF全文
利用湖北咸宁站2008年6月1日—2012年8月1日地基微波辐射计观测数据反演的相对湿度、大气液态水含量、大气水汽总量、大气层结曲线,对比分析了短时暴雨与一般降水过程发生前微波辐射计观测资料反映的特征,研究微波辐射计观测资料在短时暴雨潜势预报中的应用。结果表明:当大气液态水含量从1 mm左右急增至约20 mm、大气水汽总量从60~70 mm急增到90 mm以上之后,如果0~6 km整层相对湿度均接近饱和或达到饱和状态,且在800~950 hPa附近存在逆温层,最大K指数超过35℃,最大TT指数 (Thei-Tornqvist指数) 达到或超过40℃,那么未来3 h或6 h内发生短时暴雨的几率大。  相似文献   

6.
郑州市两次不同背景下特大暴雨诊断分析   总被引:1,自引:1,他引:0  
利用NCEP资料,根据降水实况分布及各物理量分层平面分布,每隔6 h对特大暴雨中心区所在经、纬向带各物理量场作经、纬向垂直剖面图,结合高空观测图对郑州市两次特大暴雨发生的大环流形势场、触发特大暴雨发生的各物理量场进行诊断分析。结果表明:1)连续性特大暴雨区出现在低空急流轴的前方,一方面是由于低空急流前方水平辐合较强,另一方面低空急流对暖湿空气的输送,使大气不稳定度加强;局地短时性特大暴雨过程主要是冷空气侵入使冷暖湿空气团在郑州上空交汇,其对流不稳定能量释放所致。2)辐合线对暖湿空气的抬升运动起到动力加强作用,是触发中尺度雨团的根源,也是特大暴雨产生的根源。3)连续性暴雨发生、发展时,高空的反气旋起主导作用;局地短时性暴雨发生时,中低空的气旋辐合起主导作用。4)短时性特大暴雨天气,前期有较强的不稳定层结;连续性暴雨天气刚发生时,其前期存在较强的不稳定层结,在暴雨连续发生过程中不一定有强不稳定层结。5)连续性暴雨需要较强的水汽输送带,局地短时性暴雨不要求有明显的水汽输送。  相似文献   

7.
为了更加深入地了解暴雨中尺度系统,利用风廓线雷达资料,对2012—2014年发生在广东前汛期的短时强降水的暴雨过程临近时次的低空急流强度、低空急流高度、低空急流指数以及各层垂直风切变等物理量进行了分析研究。研究结果表明:(1)在广东前汛期,86%的暴雨过程都会有短时强降水的出现; (2)2 km高度以下最大风速呈正态分布特征,主要集中在10~21 m/s之间,60%以上的强降水发生前3小时低空急流便已经存在,且随着强降水的临近,低空急流的比例逐渐增大,超过80%的过程强降水出现时有低空急流相配合; (3)暴雨发生前低空急流强度基本维持,最低高度逐渐降低。强降水出现时次,低空急流表现出逐渐加强的特征,最低高度也明显下降,从而导致低空急流指数I增大; (4)地面到不同等压面的垂直风切变随着高度的增加而逐渐减小,其中强降水发生时地面到925 hPa垂直风切变相较于暴雨发生前有所增大,而地面到850 hPa及700 hPa垂直风切变在强降水发生时则表现出下降的特征; (5)选取暴雨发生前各类物理量的中值作为暴雨发生的阈值,则低空急流强度在13.5 m/s左右,最低高度为1 km左右,低空急流指数I为6×10-3 s-1左右,地面到925 hPa、850 hPa以及700 hPa之间的垂直风切变分别在7.3×10-3 s-1、6×10-3 s-1以及4×10-3 s-1左右。   相似文献   

8.
利用太原1981—2016年城市化发展与7个国家气象站降水资料、59个区域气象站2008—2015年气温、降水资料,分析了城市化与暴雨时空分布变化的关系及其影响机理。结果表明:(1)近36 a来,太原暴雨具有明显的局地性和年代际特征。太原单站暴雨日数占总暴雨日数的61. 4%,1990年代较1980年代局地暴雨日数增加较快; 1990年代中期以后,区域性暴雨的日数快速增多,范围扩大。1980—2010年代,城区暴雨明显多于县区,降水时间更集中,且城区暴雨东、西部存在明显差异。(2)太原城市化各项发展指数与短时暴雨发生频次均存在显著正相关,而城市人口增长和空间的扩大使得暴雨显著增多。(3)城市化使中心城区成为明显的热岛,城郊间的温度梯度增大。城市热岛的存在,使中心城区大气层结较其他区域更加不稳定,热力强迫在城区产生的中尺度热低压或边界层辐合线有利于触发强对流,从而产生短时暴雨。另外,在天气尺度背景下,热岛平均扰动场通过与偏东风(盛行风)相互作用,使得边界层平均热力稳定度在城区东部减小、西部增加,太原三面环山的地形结构强化了城区与山区间的温度梯度,使得城区东部雨强加大、短时暴雨易发。城市摩擦效应通过延长天气系统在城区滞留时间,也增大了城区暴雨的发生概率。  相似文献   

9.
利用常规观测资料、NCEP 1°×1°再分析资料、FY2E卫星资料、商洛多普勒雷达资料,从环流背景、水汽、动力条件和不稳定机制等方面对2014年7月28日发生在商洛局地性较强的一次短时暴雨过程进行分析。结果表明:这次短时暴雨过程天气的影响系统主要为短波槽、副热带高压与热低压。低层850hPa副高西侧暖湿气流北上为暴雨发生发展提供了有利的水汽条件。对流层中高层涡旋运动增强带动低层上升运动发展加强,为对流天气的进一步发展提供了动力条件。短波槽后西北干冷气流与低层偏南暖湿气流形成不稳定层结,加之中低层对流不稳定层结加强,CAPE值及低层湿度显著增大,抬升凝结高度与自由对流高度降低,因此在较低的抬升条件下,触发了此次对流性天气。卫星云图和雷达图上表现为中尺度系统,生命期短,发生发展速度快。强降水主要发生在对流云团强中心西北侧TBB梯度大值区。  相似文献   

10.
刘辉  寿亦萱  漆成莉 《气象》2014,40(6):678-686
使用探空、NCEP-FNL,数据和高光谱分辨率大气垂直探测仪(AIRS)标准反演数据计算大气不稳定度指数,对2011年6月23日北京强对流天气发生前的本地及上游大气中不稳定能量进行分析研究。分析发现:利用08、14和20时探空数据计算的北京站不稳定度指数显示了在"6·23暴雨"过程发生前后北京上空不稳定能量变化,上游关键区无探空数据;利用NCEP和AIRS数据计算的不稳定度指数显示,强对流天气发生前,在北京的上游关键区大气处于极端不稳定状态(K指数大于40,SI指数小于一5),有利于强对流天气发生。文章的研究结果表明,探空数据时空分辨率较低,不利于监测强对流天气的发生;质量控制后AIRS数据计算的不稳定度指数可以监测对流天气的发生;空间分辨率较低的NCEP数据监测小范围大气不稳定层结能力较低。综上所述,AIRS反演产品具有弥补探空资料时空分辨率不足的优势,利用AIRS L2反演产品计算晴空大气不稳定度指数产品可以监测到"6·23暴雨"天气发生前上游关键区大气层结稳定度状态,为预报员决策提供有效的辅助信息。  相似文献   

11.
Using the International Comprehensive Ocean-Atmosphere Data Set(ICOADS) and ERA-Interim data, spatial distributions of air-sea temperature difference(ASTD) in the South China Sea(SCS) for the past 35 years are compared,and variations of spatial and temporal distributions of ASTD in this region are addressed using empirical orthogonal function decomposition and wavelet analysis methods. The results indicate that both ICOADS and ERA-Interim data can reflect actual distribution characteristics of ASTD in the SCS, but values of ASTD from the ERA-Interim data are smaller than those of the ICOADS data in the same region. In addition, the ASTD characteristics from the ERA-Interim data are not obvious inshore. A seesaw-type, north-south distribution of ASTD is dominant in the SCS; i.e., a positive peak in the south is associated with a negative peak in the north in November, and a negative peak in the south is accompanied by a positive peak in the north during April and May. Interannual ASTD variations in summer or autumn are decreasing. There is a seesaw-type distribution of ASTD between Beibu Bay and most of the SCS in summer, and the center of large values is in the Nansha Islands area in autumn. The ASTD in the SCS has a strong quasi-3a oscillation period in all seasons, and a quasi-11 a period in winter and spring. The ASTD is positively correlated with the Nio3.4 index in summer and autumn but negatively correlated in spring and winter.  相似文献   

12.
The spatial and temporal variations of daily maximum temperature(Tmax), daily minimum temperature(Tmin), daily maximum precipitation(Pmax) and daily maximum wind speed(WSmax) were examined in China using Mann-Kendall test and linear regression method. The results indicated that for China as a whole, Tmax, Tmin and Pmax had significant increasing trends at rates of 0.15℃ per decade, 0.45℃ per decade and 0.58 mm per decade,respectively, while WSmax had decreased significantly at 1.18 m·s~(-1) per decade during 1959—2014. In all regions of China, Tmin increased and WSmax decreased significantly. Spatially, Tmax increased significantly at most of the stations in South China(SC), northwestern North China(NC), northeastern Northeast China(NEC), eastern Northwest China(NWC) and eastern Southwest China(SWC), and the increasing trends were significant in NC, SC, NWC and SWC on the regional average. Tmin increased significantly at most of the stations in China, with notable increase in NEC, northern and southeastern NC and northwestern and eastern NWC. Pmax showed no significant trend at most of the stations in China, and on the regional average it decreased significantly in NC but increased in SC, NWC and the mid-lower Yangtze River valley(YR). WSmax decreased significantly at the vast majority of stations in China, with remarkable decrease in northern NC, northern and central YR, central and southern SC and in parts of central NEC and western NWC. With global climate change and rapidly economic development, China has become more vulnerable to climatic extremes and meteorological disasters, so more strategies of mitigation and/or adaptation of climatic extremes,such as environmentally-friendly and low-cost energy production systems and the enhancement of engineering defense measures are necessary for government and social publics.  相似文献   

13.
Various features of the atmospheric environment affect the number of migratory insects, besides their initial population. However, little is known about the impact of atmospheric low-frequency oscillation(10 to 90 days) on insect migration. A case study was conducted to ascertain the influence of low-frequency atmospheric oscillation on the immigration of brown planthopper, Nilaparvata lugens(Stl), in Hunan and Jiangxi provinces. The results showed the following:(1) The number of immigrating N. lugens from April to June of 2007 through 2016 mainly exhibited a periodic oscillation of 10 to 20 days.(2) The 10-20 d low-frequency number of immigrating N. lugens was significantly correlated with a low-frequency wind field and a geopotential height field at 850 h Pa.(3) During the peak phase of immigration, southwest or south winds served as a driving force and carried N. lugens populations northward, and when in the back of the trough and the front of the ridge, the downward airflow created a favorable condition for N. lugens to land in the study area. In conclusion, the northward migration of N. lugens was influenced by a low-frequency atmospheric circulation based on the analysis of dynamics. This study was the first research connecting atmospheric low-frequency oscillation to insect migration.  相似文献   

14.
The atmospheric and oceanic conditions before the onset of EP El Ni?o and CP El Ni?o in nearly 30 years are compared and analyzed by using 850 hPa wind, 20℃ isotherm depth, sea surface temperature and the Wheeler and Hendon index. The results are as follows: In the western equatorial Pacific, the occurrence of the anomalously strong westerly winds of the EP El Ni?o is earlier than that of the CP El Ni?o. Its intensity is far stronger than that of the CP El Ni?o. Two months before the El Ni?o, the anomaly westerly winds of the EP El Ni?o have extended to the eastern Pacific region, while the westerly wind anomaly of the CP El Ni?o can only extend to the west of the dateline three months before the El Ni?o and later stay there. Unlike the EP El Ni?o, the CP El Ni?o is always associated with easterly wind anomaly in the eastern equatorial Pacific before its onset. The thermocline depth anomaly of the EP El Ni?o can significantly move eastward and deepen. In addition, we also find that the evolution of thermocline is ahead of the development of the sea surface temperature for the EP El Ni?o. The strong MJO activity of the EP El Ni?o in the western and central Pacific is earlier than that of the CP El Ni?o. Measured by the standard deviation of the zonal wind square, the intensity of MJO activity of the EP El Ni?o is significantly greater than that of the CP El Ni?o before the onset of El Ni?o.  相似文献   

15.
正The Taal Volcano in Luzon is one of the most active and dangerous volcanoes of the Philippines. A recent eruption occurred on 12 January 2020(Fig. 1a), and this volcano is still active with the occurrence of volcanic earthquakes. The eruption has become a deep concern worldwide, not only for its damage on local society, but also for potential hazardous consequences on the Earth's climate and environment.  相似文献   

16.
The moving-window correlation analysis was applied to investigate the relationship between autumn Indian Ocean Dipole (IOD) events and the synchronous autumn precipitation in Huaxi region, based on the daily precipitation, sea surface temperature (SST) and atmospheric circulation data from 1960 to 2012. The correlation curves of IOD and the early modulation of Huaxi region’s autumn precipitation indicated a mutational site appeared in the 1970s. During 1960 to 1979, when the IOD was in positive phase in autumn, the circulations changed from a “W” shape to an ”M” shape at 500 hPa in Asia middle-high latitude region. Cold flux got into the Sichuan province with Northwest flow, the positive anomaly of the water vapor flux transported from Western Pacific to Huaxi region strengthened, caused precipitation increase in east Huaxi region. During 1980 to 1999, when the IOD in autumn was positive phase, the atmospheric circulation presented a “W” shape at 500 hPa, the positive anomaly of the water vapor flux transported from Bay of Bengal to Huaxi region strengthened, caused precipitation ascend in west Huaxi region. In summary, the Indian Ocean changed from cold phase to warm phase since the 1970s, caused the instability of the inter-annual relationship between the IOD and the autumn rainfall in Huaxi region.  相似文献   

17.
Storms that occur at the Bay of Bengal (BoB) are of a bimodal pattern, which is different from that of the other sea areas. By using the NCEP, SST and JTWC data, the causes of the bimodal pattern storm activity of the BoB are diagnosed and analyzed in this paper. The result shows that the seasonal variation of general atmosphere circulation in East Asia has a regulating and controlling impact on the BoB storm activity, and the “bimodal period” of the storm activity corresponds exactly to the seasonal conversion period of atmospheric circulation. The minor wind speed of shear spring and autumn contributed to the storm, which was a crucial factor for the generation and occurrence of the “bimodal pattern” storm activity in the BoB. The analysis on sea surface temperature (SST) shows that the SSTs of all the year around in the BoB area meet the conditions required for the generation of tropical cyclones (TCs). However, the SSTs in the central area of the bay are higher than that of the surrounding areas in spring and autumn, which facilitates the occurrence of a “two-peak” storm activity pattern. The genesis potential index (GPI) quantifies and reflects the environmental conditions for the generation of the BoB storms. For GPI, the intense low-level vortex disturbance in the troposphere and high-humidity atmosphere are the sufficient conditions for storms, while large maximum wind velocity of the ground vortex radius and small vertical wind shear are the necessary conditions of storms.  相似文献   

18.
Observed daily precipitation data from the National Meteorological Observatory in Hainan province and daily data from the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis-2 dataset from 1981 to 2014 are used to analyze the relationship between Hainan extreme heavy rainfall processes in autumn (referred to as EHRPs) and 10–30 d low-frequency circulation. Based on the key low-frequency signals and the NCEP Climate Forecast System Version 2 (CFSv2) model forecasting products, a dynamical-statistical method is established for the extended-range forecast of EHRPs. The results suggest that EHRPs have a close relationship with the 10–30 d low-frequency oscillation of 850 hPa zonal wind over Hainan Island and to its north, and that they basically occur during the trough phase of the low-frequency oscillation of zonal wind. The latitudinal propagation of the low-frequency wave train in the middle-high latitudes and the meridional propagation of the low-frequency wave train along the coast of East Asia contribute to the ‘north high (cold), south low (warm)’ pattern near Hainan Island, which results in the zonal wind over Hainan Island and to its north reaching its trough, consequently leading to EHRPs. Considering the link between low-frequency circulation and EHRPs, a low-frequency wave train index (LWTI) is defined and adopted to forecast EHRPs by using NCEP CFSv2 forecasting products. EHRPs are predicted to occur during peak phases of LWTI with value larger than 1 for three or more consecutive forecast days. Hindcast experiments for EHRPs in 2015–2016 indicate that EHRPs can be predicted 8–24 d in advance, with an average period of validity of 16.7 d.  相似文献   

19.
Based on the measurements obtained at 64 national meteorological stations in the Beijing–Tianjin–Hebei (BTH) region between 1970 and 2013, the potential evapotranspiration (ET0) in this region was estimated using the Penman–Monteith equation and its sensitivity to maximum temperature (Tmax), minimum temperature (Tmin), wind speed (Vw), net radiation (Rn) and water vapor pressure (Pwv) was analyzed, respectively. The results are shown as follows. (1) The climatic elements in the BTH region underwent significant changes in the study period. Vw and Rn decreased significantly, whereas Tmin, Tmax and Pwv increased considerably. (2) In the BTH region, ET0 also exhibited a significant decreasing trend, and the sensitivity of ET0 to the climatic elements exhibited seasonal characteristics. Of all the climatic elements, ET0 was most sensitive to Pwv in the fall and winter and Rn in the spring and summer. On the annual scale, ET0 was most sensitive to Pwv, followed by Rn, Vw, Tmax and Tmin. In addition, the sensitivity coefficient of ET0 with respect to Pwv had a negative value for all the areas, indicating that increases in Pwv can prevent ET0 from increasing. (3) The sensitivity of ET0 to Tmin and Tmax was significantly lower than its sensitivity to other climatic elements. However, increases in temperature can lead to changes in Pwv and Rn. The temperature should be considered the key intrinsic climatic element that has caused the "evaporation paradox" phenomenon in the BTH region.  相似文献   

20.
正While China’s Air Pollution Prevention and Control Action Plan on particulate matter since 2013 has reduced sulfate significantly, aerosol ammonium nitrate remains high in East China. As the high nitrate abundances are strongly linked with ammonia, reducing ammonia emissions is becoming increasingly important to improve the air quality of China. Although satellite data provide evidence of substantial increases in atmospheric ammonia concentrations over major agricultural regions, long-term surface observation of ammonia concentrations are sparse. In addition, there is still no consensus on  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号