首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 260 毫秒
1.
利用河北省中南部地区皇寺国家观测站布设的毫米波云雷达、微雨雷达结合飞机等联合观测数据,对2019年2 月14日河北中南部地区一次冷锋降雪云系微物理演变特征进行分析,探讨雷达回波与冰雪晶粒子微结构的关系,以便更好地认识该地区自然降雪的宏微观结构特征。研究结果表明:降雪初生阶段表现为双层云结构,中云云顶高约4100 m,云底高约3600 m,低云云顶高约3100 m,云底高约200 m,中间存在一干层,3000 m以下高度粒子增长以凇附过程为主。降雪发展阶段上下两层云相接,雷达回波强度较强的时段地面降水量也较大,该时段降雪过程主要以凝华〖CD*2〗聚并增长为主。降雪后期回波强度最大值减小,云顶高降低,3000 m以下高度范围内回波强度、多普勒速度、谱宽随高度降低呈增大趋势;飞机观测结果显示,降雪消散阶段逆温层底部由于水云云层较薄,催化潜力较小,冰雪晶粒子主要位于云的中上部,随着高度降低,冰雪晶粒子在下落过程中增大,与雷达观测结果一致,毫米波云雷达和微雨雷达反射率因子随高度变化与降水粒子有效粒径之间相关系数分别为0.89和0.83, 雷达反射率因子主要受冰雪晶等大尺度粒子主导。  相似文献   

2.
正1天气实况2016年11月13-14日黑龙江省发生一次暴雪天气过程,过程系统移动速度快,降雪强度大,最大降雪量出现在龙江,降雪量为18.0 mm。过程出现东西两个降雪中心,西部中心位于齐齐哈尔附近,东部地区降雪中心位于鹤岗附近, 6 h最大降雪量西部出现在龙江(14 mm),东部出现在鹤岗(7.6 mm)。2形势分析2016年11月13日08时-14日08时,500 hPa  相似文献   

3.
利用乌鲁木齐气象站的激光雨滴谱仪观测数据,分析2018年3月17—18日和12月1日的两次暴雪天气的滴谱特征。结果表明:(1)两次过程的雪滴谱表现为单峰分布,粒子浓度峰值均在低谱段,雪滴谱宽度分别为0.42~4.63 mm和0.55~6.78 mm。(2)个例1中降雪云偏向于层状云类型,降雪主要由较小尺寸的霰或者凇附的冰相粒子组成,个例2中的降雪云偏向积层混合云类型,降雪主要以尺寸较大的干雪花为主。(3)两次降雪过程中的Dm和lg NW的拟合经验关系式呈现出明显的负相关。(4)拟合的本地化Z-R关系式分别为Z=171.7R2.22和Z=518.7R2.27,两次降雪过程的雷达反射率因子平均值分别为20 dBZ和25 dBZ。  相似文献   

4.
2000年以来云南4次强降雪过程的对比分析   总被引:4,自引:3,他引:4       下载免费PDF全文
通过对2000年以来云南出现的4次强降雪过程进行分类对比分析和诊断分析, 结果表明:横槽型和北脊南槽型是4次强降雪的主要中高纬环流形势, 3次有南支槽配合, 1次无南支槽活动, 其中2次横槽型造成的强降雪范围广、强度大; 4次强降雪过程云南西侧都有充沛的水汽输送, 水汽通量增大 (即水汽的增加) 是云南强降雪的必备条件, 强降雪出现在较强水汽通量辐合区中, 且落区在辐合中心的偏东一侧、θse线陡立区附近以及暖湿不稳定区域; 强降雪在多普勒雷达上显示为20~30 dBz左右的层状云回波, 对流层中下层的高空冷暖平流和高空西南急流是有南支槽影响的强降雪天气的主要大尺度特征, 而低层偏东急流是无南支槽影响的强降雪的主要特征, 因此高低空急流的形成是强降雪的关键。  相似文献   

5.
一次降雪过程的多普勒雷达探测分析   总被引:14,自引:1,他引:14       下载免费PDF全文
文章应用多普勒雷达资料,并结合天气图、卫星云图等资料对2001年12月12日黑龙江省西南部地区一次大范围的较大降雪过程进行了分析。通过对这次较大降雪过程的多普勒雷达探测,分析了这次降雪回波过程的特征,分析了回波强度的不均匀性、速度场回波的低空急流和高度显示的二层云结构等特征,对大雪探测和预报都具有一定的意义。  相似文献   

6.
北京延庆山区降雪云物理特征的垂直观测和数值模拟研究   总被引:1,自引:0,他引:1  
基于风廓线雷达、云雷达、粒子谱仪、微波辐射计和自动站等垂直观测设备,结合中尺度数值模式WRF对2017年3月23~24日北京延庆海坨山地区的一次降雪过程进行了观测和数值模拟研究。研究结果表明:垂直探测仪器结合中尺度数值模式可以获得降雪的宏观结构和微物理信息,有助于对降雪的深入研究。此次降雪过程由中高层西南及偏南暖湿气流与低层东南偏冷空气交汇造成动力和水汽辐合抬升形成,4~5 km高度处的风切变有利于降雪的增强。上升气流有助于水汽的输送、冰雪转化以及雪晶凝华、聚合,冰晶数浓度中心对应着上升运动顶部。然而此次降雪云系低层过冷云水含量不足,降雪回波<20 dBZ,回波顶高<7 km,雪花垂直下落速度<2 m s-1,地面降水量大值与低层强回波区对应。降雪粒子谱分布范围较窄,以直径1 mm左右的小粒子为主,相态主要为干雪,基本不存在混合相态。  相似文献   

7.
1降雪概况 11月30日-12月3日,黑龙江省迎来2014年冬第一次大范围的降雪天气。此次降雪过程具有影响范围广、持续时间长,雪量大,降雪同时风力较强、雪后降温明显的特点。1.1影响范围广11月30日-12月3日受高空冷涡和西南暖湿气流的共同影响,黑龙江省自西向东出现一次大到暴雪、局部大暴雪天气,降雪主要集中在黑龙江省中、东部地区。  相似文献   

8.
从降雪预警业务实际出发,设计了基于最优化法的雷达估测降雪方法,对2007年3月4日特大暴雪过程开展雷达降雪估测试验,并分析估测结果的误差。针对温度变化、雪花末速度、与雷达的距离和计算方法等方面的误差因素制定了3种改进方案。改进后的估测降雪量与实况降雪量的相关系数提高到0.66(超过99%信度检验),平均相对误差降低至48.74%,对于0.3 mm/h的较弱降雪和5 mm/h以上的强降雪均具有估测能力。其中距离雷达50~100 km的样本估测降雪量与实况降雪量的相关系数达到0.82。在3种改进方案中,考虑降雪末速度影响的改进效果不明显,这可能与本次暴雪过程的回波较均匀有关;按雷达与样本距离分类进行雷达降雪估测的效果最明显,不仅可以增加相似程度,还减小了雷达近距离高估和远距离低估的误差;而算法的改进进一步提高估测精度。本次雷达降雪估测对于1.6~2.5 mm/h的较强降雪和2.6 mm/h以上的强降雪平均相对误差较小,分别为31%和27%,但雷达降雪估测高估了1.5 mm/h以下的降雪而低估2.6 mm/h以上的强降雪。一方面说明雷达回波对于降雪强弱变化不是很敏感,另一方面在业务实际工作中有可能利用这种一致性的误差进行订正,以提高降雪估测精度。   相似文献   

9.
黑龙江省2次暴雪天气过程对比分析   总被引:1,自引:0,他引:1  
2002年10月28日和2006年4月20日黑龙江省东部地区出现大范围的降雪过程,2次过程降雪量大,积雪深,对农业、交通等方面都产生了极大的影响。本文主要应用常规观测资料分析2次强降雪过程形成原因,通过对比找出特点。  相似文献   

10.
通过对乌兰察布市2006年1月18—21日及2月5—6日两次降雪过程发生时主要天气形势、影响系统、物理量场特征的综合对比分析得出:要有大的降雪发生,必须高低空系统配合一致,并有适宜降雪发生的物理场量相配合。同时又表明700hPa上的锋区,与地面系统及适宜降雪发生的物理量场相配合;也可造成一定强度的降雪。  相似文献   

11.
毫米波测云雷达在降雪观测中的应用初步分析   总被引:2,自引:0,他引:2  
本文利用毫米波云雷达联合称重式雨量计、气球探空和S波段天气雷达在北京对2015年11月三次降雪进行了观测,以2015年11月22~23日降雪过程为例,主要从降雪系统的宏观结构特征、微物理变化以及毫米波雷达在降雪探测中电磁波衰减情况、雪粒子含水量和地面降雪量估测几方面进行初步分析。结果表明:(1)毫米波云雷达具有高时空分辨率,能对降雪系统进行精细化探测,在降雪系统发展最旺盛的阶段能够通过反射率(Z)、退极化比(LDR)和径向速度(V)初步判断出云中是否含有过冷液滴;(2)降雪回波强度最大值能反映整层云系中含水量最大的区域,当最大值Z大于20 dBZ时,最大值的大小、最大值持续时间、最大值出现的高度与地面降水量成正相关,速度最大值表示云中粒子上升最大速度(速度为正时)或者粒子下落的最小速度(速度为负时),主要分布在-0.5~2 m s?1,速度最小值表示粒子下落的最大速度,主要在-3~-1 m s?1;(3)随着高度增加反射率的垂直廓线会出现多个峰值,这是由于不同高度层风速分布不均造成的,降雪回波这种特点比降雨回波更明显;(4)对比Ka与S波段雷达反射率可知,两雷达反射率平均差值小于2.5 dBZ,Ka波段反射率略大S波段雷达反射率;(5)降雪量反演与地面降雪量仪数据对比,逐小时降雪量反演精度为20.38%,累计降雪量反演误差为6.58%,24小时累计降雪量绝对误差为1.9 mm,说明云雷达估算累计降雪量具有较高的可行性,能够很准确的反映地面实际降雪情况,当降雪系统发展旺盛时,雪粒子含水量分布在0.05~0.15 g m?3,在降雪初期或者降雪系统消散期,雪粒子含水量一般小于0.04 g m?3,能够很好地反映出整层降雪回波的雪粒子含水量。这些云雷达在降雪观测中的应用和初步分析结果可以更好的地了解降雪系统宏微观结构,为云模式的发展和人工影响天气中增雪潜力评估提供一些参考。  相似文献   

12.
正1引言2007年1月29-31日,绥化市出现了一次大风降雪天气过程,降雪中心在绥化市的北林区降雪量为10 mm。望奎、庆安、绥棱降雪量为8-9 mm,其余县(市)降雪量为4-5 mm,全市平均降雪量为7 mm。此次大风降雪天气是一次常见的过程,但是由于这是绥化市入冬以来最大的一次降雪,给道路交通和人们的出行带来了一定的影响,不过对春季保  相似文献   

13.
本文针对2008年11月2日、13日和15日3次较大降雪天气过程,从卫星云图应用等方面分析了3种不同的云系在降雪过程中的演变情况,并结合700 hPa高空网进行分析.初步得出3种不同云系出现大降雪的一些特征.  相似文献   

14.
2019年2月14日在北京海坨山地区出现了一次由低槽云系产成的降雪过程。利用飞机、Ka波段云雷达、微波辐射计、降水粒子谱仪、雪晶显微观测仪等协同观测数据集,分析了此次降雪过程的天气形势、中尺度和微观结构的演变特征。协同观测显示:(1)降雪过程由高空低槽和地面倒槽槽前西南暖湿气流与低层东风回流干冷偏东风共同影响形成,西南风厚度和强度与地面降雪量以及降雪粒子数浓度成正相关。(2)降雪云系为冰云,地面降雪形状主要为片状、枝状和柱状单晶体,冰雪晶的凝华-聚并增长是降雪的主要形成机制。(3)大量枝状雪花的攀附现象出现在地形云爬升阶段,即低层东风回流减弱,转由倒槽槽前西南暖湿气流控制。(4)过冷水的出现与地形抬升有关,地形云爬升期间存在人工增雪潜力。   相似文献   

15.
一次降雪过程的多普勒雷达探测与分析   总被引:3,自引:0,他引:3  
应用多普勒雷达及天气图、卫星云图等资料,对2001年12月12日黑龙江省西南部地区出现的一次大范围的较大降雪过程进行了分析。通过多普勒雷达探测,分析这次降雪回波过程的特征、回波强度的不均匀性、速度场回波的低空急流和高度显示的二层云结构等特征。  相似文献   

16.
利用地面、高空常规观测资料、NCEP1°×1°再分析资料以及CB型多普勒雷达资料,从天气实况、环流形势、物理量场和雷达回波等方面对2016年影响怀化的2次低温雨雪天气过程进行对比分析。结果表明:“1.22”过程500 hPa中高纬呈西高东低形势,“3.9”过程呈两槽一脊形势。2次过程影响系统均包含有高空槽、低空急流、切变线和地面冷锋。“1.22”过程冷空气强度强于“3.9”过程,降雪更明显、气温更低,“3.9”过程水汽条件更好,降雨更强。700 hPa温度和地面2 m气温对怀化预报降水相态有重要指示意义。物理量方面,2次过程中南部降水量强于北部,“3.9”过程降雨量更大,表明中层水汽输送、水汽辐合以及涡度场对雨雪过程发生发展、强度和落区具有指示意义。雷达回波方面,2次过程降雪阶段主要以层状云降水回波为主。深厚的强冷空气对“1.22”过程中的降雪和低温、强暖湿气流对“3.9”过程的较强降水起着重要作用。同时,地形对降雪相态以及降水强度有一定的影响。  相似文献   

17.
应用常规地面和高空观测资料、NCEP/NCAR 1°×1°再分析资料以及山东省122个国家自动站日降水量和小时降水量资料,从日积雪深度和过程总降水量两个角度分别定义第一和第二类极端降雪事件,并进一步对其基本特征进行分析总结。结论如下:(1)山东省极端降雪事件发生在江淮气旋和回流天气形势下,出现在11月(初冬)和2月(早春)的可能性最大,江淮气旋类多出现在2月,回流类多出现在11月。(2)极端降雪事件中鲁东南、鲁西北西部和鲁中北部地区降雪量大且出现极端降雪次数多。江淮气旋类极端降雪过程降水量大值中心出现在鲁东南、鲁中北部和半岛地区,而回流类过程降水量呈现出"南多北少"的分布特征。(3)相比较于江淮气旋类降雪过程,回流类极端降雪过程出现的单站最大降水量更大,且大雨以上量级降水范围更广。通常极端降雪过程中,降水量最大为50.0~59.9 mm,多数站点过程降水量为10.0~29.9 mm。(4)不同天气系统影响下的两类极端降雪过程地面气旋初生时中心气压值、冷高压中心强度和位置、低空急流的厚度和强度等特征有所不同。(5)回流类极端降雪过程,水汽辐合层次深厚,700 h Pa与850 h Pa均有明显的水汽辐合,江淮气旋类极端降雪过程中水汽辐合层次较低,主要位于850 h Pa附近。对于过程降水量超过50.0 mm的极端降雪事件,700 h Pa和850 h Pa比湿均达到并超过5 g·kg~(-1)。(6)回流类极端降雪过程伴有不同范围寒潮。  相似文献   

18.
施红蓉  李峰  吴蕾  金莲姬 《气象》2014,40(10):1259-1265
利用北京延庆风廓线雷达资料对2012年11月3日地面由降雨转为降雪的过程进行宏观和微观结构分析。结果显示:风廓线雷达的强度和速度产品能够很好地监测、诊断降雨到降雪相态变化的持续时间。降雨发生前,风廓线雷达反射率、信噪比、谱宽等因子均表现为不连续特征;地面降雨发生时,800~1000 m高度上出现明显的反射亮带;随着亮带的消失,地面降雨转变为降雪。地面降雨阶段,回波功率密度谱图呈现分层结构,1300 m以上表现为固态粒子特征,700 m以下为液态粒子,分层的高度与温度存在密切的关系,一般在274~275 K的环境内为融化层,融化层功率谱密度变化最为明显。另外,北京近3年层状云降水条件下.降雨和降雪阶段的垂直径向速度和信噪比数据统计表明,降雨发生时径向速度的范围一般在3~6 m·s~(-1)之间,信噪比在15~25 dB;而降雪发生时垂直径向速度值较小,在0~1.5 m·s~(-1),信噪比在3~15 dB之间。  相似文献   

19.
孙晶  楼小凤  胡志晋 《高原气象》2009,28(3):485-495
利用部分改进了的中尺度数值模式MM5V3对2006年2月7~8日祁连山一次降雪过程进行了三重双向影响嵌套模拟研究, 模式对雪带分布的模拟与实测基本吻合。重点分析了此次降雪过程中的热力动力特征和云的微物理结构, 并通过地形敏感性试验, 研究了祁连山地形对降雪的作用。结果表明: 降雪过程中有低层西北湿冷气流向祁连山区输送水汽在山前形成大值区, 气流除在祁连山周围绕流外同时沿祁连山北坡爬升, 降雪前期空气饱和层和上升气流区比较深厚, 为祁连山北坡降雪中心的形成提供了有利的动力热力条件, 降雪后期有高空干冷下沉气流侵入使降雪减弱。这次过程为冷性稳定层云降雪过程, 水成物含水量大值区也主要分布于祁连山北坡和山顶附近, 冰晶和雪分布在6 km以下, 在冷云顶存在0.06 g·kg-1的过冷云水。祁连山高大地形对大范围降雪落区无明显影响, 但对祁连山北坡降雪中心形成有直接影响。降低地形高度后, 山顶无法形成上升运动和云粒子, 迎风坡云体发展减弱。地形对降雪增幅中心主要位于祁连山北坡, 24 h最大增幅达3 mm。  相似文献   

20.
“2009.11”山西大暴雪天气过程诊断分析   总被引:2,自引:0,他引:2  
利用山西省109个测站的降雪资料、FY-2C卫星云图和华北雷达拼图,分析了2009年11月9~13日山西大暴雪天气过程的环流背景、中低空系统配置、物理量场中相对湿度、散度及垂直速度沿112.5°E的空间垂直剖面。结果表明,此次暴雪天气以500hPa南支槽与西风槽的相继影响为背景,有利的中低层(700hPa切变与急流、850hPa东风急流)系统配置为持续降雪提供了有利条件。在强降雪时段,物理量场的空间垂直剖面呈现出相对湿度在200hPa以下形成≥80%深厚的湿空气柱,整个对流层为高层辐散、低层辐合的不稳定结构,山西处于上升运动区,最大负值中心(-36×10-3 hPa.s-1)位于400~500hPa,这种配置构成了强降雪产生的有利条件。FY-2C云图的云团发展与华北雷达拼图的组合反射率因子的演变类似,强降雪主要由3次大范围的中低云系和强回波东移影响所致。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号