首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
利用部分改进了的中尺度数值模式MM5V3对2006年2月7~8日祁连山一次降雪过程进行了三重双向影响嵌套模拟研究,模式对雪带分布的模拟与实测基本吻合.重点分析了此次降雪过程中的热力动力特征和云的微物理结构,并通过地形敏感性试验,研究了祁连山地形对降雪的作用.结果表明:降雪过程中有低层西北湿冷气流向祁连山区输送水汽在山前形成大值区,气流除在祁连山周围绕流外同时沿祁连山北坡爬升.降雪前期空气饱和层和上升气流区比较深厚,为祁连山北坡降雪中心的形成提供了有利的动力热力条件,降雪后期有高空干冷下沉气流侵入使降雪减弱.这次过程为冷性稳定层云降雪过程,水成物含水量大值区也主要分布于祁连山北坡和山顶附近,冰晶和雪分布在6 km以下,在冷云顶存在0.06 g·kg-1的过冷云水.祁连山高大地形对大范围降雪落区无明显影响,但对祁连山北坡降雪中心形成有直接影响.降低地形高度后,山顶无法形成上升运动和云粒子,迎风坡云体发展减弱.地形对降雪增幅中心主要位于祁连山北坡,24 h最大增幅达3 mm.  相似文献   

2.
本文分析了两次降雪过程,从B模式36—48小时短时预告物理量场结合环境场、单点要素场和卫星云图、云分析图作对比分析,从中归纳出一些大雪过程的预报因子和信息:特大降雪过程发生在明显高空槽云系(冷锋云系)与切变线云系合并过程中;西南气流强风速轴形成在降雪过程前,是暴雪过程所需能量、水汽的理想输送带。暴雪区往往位于西南气流强风轴左前侧一带;最大水汽通量中心、θ_(es)大值中心高舌区及最大上升运动中心叠置区附近基本上是未来大降雪的落区所在。  相似文献   

3.
北京延庆山区降雪云物理特征的垂直观测和数值模拟研究   总被引:1,自引:0,他引:1  
基于风廓线雷达、云雷达、粒子谱仪、微波辐射计和自动站等垂直观测设备,结合中尺度数值模式WRF对2017年3月23~24日北京延庆海坨山地区的一次降雪过程进行了观测和数值模拟研究。研究结果表明:垂直探测仪器结合中尺度数值模式可以获得降雪的宏观结构和微物理信息,有助于对降雪的深入研究。此次降雪过程由中高层西南及偏南暖湿气流与低层东南偏冷空气交汇造成动力和水汽辐合抬升形成,4~5 km高度处的风切变有利于降雪的增强。上升气流有助于水汽的输送、冰雪转化以及雪晶凝华、聚合,冰晶数浓度中心对应着上升运动顶部。然而此次降雪云系低层过冷云水含量不足,降雪回波<20 dBZ,回波顶高<7 km,雪花垂直下落速度<2 m s-1,地面降水量大值与低层强回波区对应。降雪粒子谱分布范围较窄,以直径1 mm左右的小粒子为主,相态主要为干雪,基本不存在混合相态。  相似文献   

4.
北方两次不同类型降雪过程的微物理模拟研究   总被引:13,自引:0,他引:13       下载免费PDF全文
孙晶  王鹏云  李想  逯莹 《气象学报》2007,65(1):29-44
利用中尺度模式MM5分别模拟了中国北方地区两次不同类型的降雪过程:2001年12月7—8日的北京小雪和1999年11月23—24日的辽宁雨转雪过程。文中还从微物理角度研究了这两次降雪过程,分析不同天气条件下降雪的水成物相态及其源汇项分布特点,并初步探讨云物理过程对降水热力、动力过程的反馈作用。重点分析了云物理变量的模拟结果,计算时采用输出水成物源、汇项小时累计量的方法,讨论了最大降水时段内各源、汇项的分布特征,并通过敏感性试验,分析了水成物相变潜热作用和降水粒子的拖曳作用对云的反馈影响。结果表明,云中水成物相态分布与温度有密切关系,北京小雪过程为气、固两相粒子作用,辽宁雨转雪过程为气、液、固三相粒子相互作用;在最大降水时段内,雪的产生主要来自于水汽凝华增长和雪收集冰晶增长,过冷水对形成霰很关键,冰相粒子融化加强雨的形成;降雪过程对热力、动力过程具有一定的反馈影响,相变潜热对上升运动和降水有正反馈作用,降水粒子下落拖曳力对上升运动和降水有负反馈作用。辽宁降雪过程降水粒子丰富,云物理过程对降水热力动力过程的反馈作用比北京小雪要强一些。  相似文献   

5.
利用部分改进了的中尺度模式MM5V3对2006年2月7~8日甘肃北部地区一次冷云降雪过程进行了人工催化的数值试验, 研究加入人工冰晶对祁连山北坡地区冷性层云降雪的影响。进行了不同剂量和不同高度的催化试验, 详细分析了催化后的微物理过程和动力热力过程的变化。结果表明: 累积降雪中心的上风方含有过冷云水的区域为催化潜力区, 催化后累积降雪中心雪量增加, 增雪区周围出现分散的减雪区。过冷云水最多并且最缺乏冰晶粒子的层次具有很好的催化条件。加入人工冰晶后消耗了水汽和过冷云水, 冰晶和雪的量值均有所增加, 雪碰并冰晶过程、 冰晶转化过程、 凝华过程是雪增长的主要过程, 相态变化引起的潜热增加导致升温和上升运动加强。这种变化同时使周围的垂直运动和水成物含量发生改变, 周围的上升运动减弱, 雪的含量减少, 产生了减雪区。  相似文献   

6.
祁连山冬季降雪个例模拟分析(Ⅱ):人工催化试验   总被引:2,自引:1,他引:1       下载免费PDF全文
利用部分改进了的中尺度模式MM5V3对2006年2月7~8日甘肃北部地区一次冷云降雪过程进行了人工催化的数值试验,研究加入人工冰晶对祁连山北坡地区冷性层云降雪的影响.进行了不同剂量和不同高度的催化试验,详细分析了催化后的微物理过程和动力热力过程的变化.结果表明:累积降雪中心的上风方含有过冷云水的区域为催化潜力区.催化后累积降雪中心雪量增加,增雪区周围出现分散的减雪区.过冷云水最多并且最缺乏冰晶粒子的层次具有很好的催化条件.加人人工冰晶后消耗了水汽和过冷云水,冰晶和雪的量值均有所增加,雪碰并冰晶过程、冰品转化过程、凝华过程是雪增长的主要过程,相态变化引起的潜热增加导致升温和上升运动加强.这种变化同时使周围的垂直运动和水成物含量发生改变,周围的上升运动减弱,雪的含量减少,产生了减雪区.  相似文献   

7.
常飞  杨德保  王式功  尚可政  田韬 《高原气象》2012,31(5):1294-1301
采用非静力中尺度模式WRF,对2010年4月中旬鄂北襄樊出现的一次罕见春季降雪过程的天气系统和降雪云微物理量的三维分布特征进行了模拟分析。结果表明,该模式较好地模拟了降雪中心和主要的固体降水形态。进一步分析表明,西北干冷空气南下造成了环境降温和长江中游槽线切变区激发对流的发展,在对流层中层直接形成固态降水物质,低层高湿和充足的水汽输送是这次降雪过程形成的重要因素。  相似文献   

8.
南方两次相似降雪(雨)过程的对比研究   总被引:9,自引:0,他引:9  
陈丽芳 《气象》2007,33(8):68-75
2006年2月中旬和下旬,长江三角洲一带分别发生降雪和降雨过程,预报过程中对降水形态的预报存在失误。通过对这两次过程的比较分析,期望为今后的预报中区分南方地区的固态降水和液态降水提供一定参考。得出以下一些主要结论:降雪过程高空槽前以偏西气流为主,环流较平;降水过程,槽前西南气流强盛,偏南分量明显。南方大雪的产生须由东北风回流产生的冷平流在华东一带形成冷中心,而北到西北风产生的冷平流降温往往因为降水与降温不同步,无法形成大雪。降雪过程开始前,850hPa附近存在干层,而降雨过程则是中低层都湿。逆温层和700~800hPa的温度对降水形态有重要影响。降雪过程结束时高层先变干,而降雨过程结束时是中层先变干。降雪过程,上空大气中冰雪区集中,含雪量和冰晶含量大值中心与降雪带位置相对应。降雨过程含雪量下界抬高,含雪量和冰晶含量大值中心落后于降雨带,并且南压过程中快速减弱,冰雪区分散。  相似文献   

9.
主要对2010年3月14日华北强降雪进行了模拟、诊断和特征分析.此次华北降雪在中、低层主要受西风槽、低涡及切变线影响,蒙古气旋东移加强、地面倒槽发展及东风回流建立构成了有利地面天气形势,西北涡、强势的西南暖湿气流及稳定的环渤海高压对此次强降雪至关重要.垂直速度、散度、涡度、螺旋度的分布和演变反映出在此次降雪过程中,强降雪区出现了很强的辐合上升运动,降雪区上空螺旋度呈“下负上正”的垂直结构,螺旋度大值区对应强降雪中心;而锋生条件为降雪的形成和维持提供了一定的能量;相对湿度和水汽通量散度的分布说明强降雪区整层湿度较大,且水汽供应充足.  相似文献   

10.
本文主要对2010年3月14日华北强降雪进行了模拟、诊断和特征分析。此次华北降雪在中、低层主要受西风槽、低涡及切变线影响,蒙古气旋东移加强、地面倒槽发展及东风廽流建立构成了有利地面天气形势,西北涡、强势的西南暖湿气流及稳定的环渤海高压对此次强降雪至关重要。垂直速度、散度、涡度、螺旋度的分布和演变反映出在此次降雪过程中,强降雪区出现了很强的辐合上升运动,降雪区上空螺旋度呈“下负上正”的垂直结构,螺旋度大值区对应强降雪中心;而锋生条件为降雪的形成和维持提供了一定的能量;相对湿度和水汽通量散度的分布说明强降雪区整层湿度较大,且水汽供应充足。  相似文献   

11.
基于微雨雷达、Ka波段云雷达、C波段天气雷达和微波辐射计等仪器的观测资料对2019年7月27日中天山地区一次局地对流云降水过程的精细结构及演变过程进行分析,并结合WRF高分辨率数值模式模拟结果研究了热力不稳定结构及风切变层对云发展的影响。结果表明:此次降水过程中天山北坡区域受到地形热力强迫,形成爬坡气流,并与翻越天山山脉的偏南气流在局部形成对流;雷达观测发现,由于天山山区受到高空西风的控制,局地产生的对流云团不足以突破中天山北坡上空的风速较大的西南气流或偏西气流,低层的偏北气流被高层气流夹带而转向形成风切变层。降水发生后,低层对流云团被限制在风切变层以下,云顶平整且高度较低,风切变层对对流云团存在明显的抑制作用。通过分析模拟结果,此次降水过程中风切变层对中天山北坡降水云的发展及热力不稳定变化影响十分重要,高层西南风对相当位温的平流输送使得风切变层上空更倾向于热力不稳定,同时使其下方更倾向于热力稳定从而抑制低层对流而促进高层对流的发展。当低层对流云团强度不足以突破其上空因垂直风切变导致的稳定层结,对流便会被局限于垂直风切变层以下,使得降水强度减弱。  相似文献   

12.
利用ARPS(Advanced Regional Predictional System)中尺度数值模式,对2007年7月19日低涡天气背景下发生在祁连山区的一次比较典型的地形云降水过程中云和降水的宏微观结构特征进行了深入的模拟研究和分析。结果表明,ARPS模式能够较好地模拟出地面降水分布及其发展演变特征;祁连山北坡陡峭地形的抬升作用是祁连山云系降水的主要动力机制;祁连山地形作用下云和降水的微物理结构随云的不同发展阶段呈现出不同的特征。  相似文献   

13.
2011年初湖南暴雪过程的成因和数值模拟分析   总被引:1,自引:0,他引:1  
姚蓉  叶成志  田莹  张海  唐杰 《气象》2012,38(7):848-857
利用多种观测资料及NCEP再分析资料,对2011年1月1720日湖南一次大范围暴雪过程进行了诊断分析,并使用WRF模式对其云微物理特征及降水相态转换机制进行数值模拟,旨在探讨本次强雨雪过程降水相态变化和暴雪形成及其发展成因。结果表明:乌拉尔山前部南下的冷空气与来自孟加拉湾及南海的暖湿气流在湖南长时间交汇产生锋生强迫,在静止锋区上界形成强辐合上升运动,是湖南大范围暴雪天气持续的主要原因;强烈的上升运动和持续的水汽辐合为本次暴雪过程提供了动力、水汽条件,“冷空气楔”上爬升的暖湿气流维持时间较长,是持续性大范围暴雪产生的重要热力条件;WRF模式能较好地模拟降雪量级及强降雪落区。雪粒子的产生和发展不仅与液水比含量大小有关,还与其上空冰晶的含量及分布密切相关,雪的凝华增长、冰晶向雪的自动转化和雨水与雪碰并成雪可能是本次降雪发生、发展最主要的物理过程,冰雪粒子大值中心及强上升运动区对预报强降雪带位置有较好的指示作用。  相似文献   

14.
大连地区一次区域暴雪的特征分析和数值模拟   总被引:11,自引:5,他引:6       下载免费PDF全文
利用多普勒雷达资料和GTS1型数字式探空仪探测资料,分析了2006年2月6~7日大连地区暴雪过程的回波演变和要素分布特征。结果表明,降雪期间,多普勒雷达显示为20~25 dBz的层状云,回波高度不超过3 km,对流层中下层的高空冷暖平流是产生强降雪的主要原因。采用中尺度非静力模式MM5对暴雪过程进行了数值模拟,模式较好地模拟了这次过程强降雪中心的强度、位置及强降雪的变化时间。这次降雪的主要影响系统是高空槽和地面华北气旋。诊断分析了强降雪的动力和热力特征及降雪期间的中尺度特征和云物理过程。高空槽前的西南暖湿气流提供了有利的水汽条件,高空辐散和低层辐合相叠置及高空正涡度的下传,有利于垂直上升运动的加强和地面华北气旋的发展。降雪前的增暖增湿与北方冷空气的楔入使大连位于sθe能量锋区和水汽辐合区内,有利于强降雪的产生。中尺度气旋性涡旋系统的形成和发展是强降雪产生和维持的有利因素,中尺度系统维持时间相对短暂。降雪期间,云中水成物的相态分布与温度密切相关,这次降雪过程只有气、固两相粒子作用。冰相粒子主要维持在600~300 hPa,其下部与雪区相对应。冰相粒子发展加强,地面降雪增大;冰相粒子减弱消失,降雪减小停止。  相似文献   

15.
利用常规观测资料、卫星云图和NECP (1?? 1?)逐6h再分析资料,对承德市2015年2月20~21日强降雪过程环流形势和物理量场进行了分析。结果表明:在此次强降雪过程中,中、低层的西风槽、切变线和地面上东移加强的蒙古气旋构成了有利天气形势,在这些系统的共同作用下不断有干冷空气侵入承德地区与低层西南暖湿气流交汇,持续的西南暖湿气流对此次强降雪的形成和维持至关重要。相对湿度、水汽通量、垂直速度、涡度及垂直螺旋度的分布和演变很好的反映出了此次强降雪过程中物理量场特点:相对湿度和水汽通量的分布说明强降雪区上空湿度较大且有充足的水汽供应,水汽通量的增大与降雪的增强相一致,水汽通量大值中心与强降雪有很好对应关系。强降雪区上空伴有较强上升运动;降雪区上空均为正涡度时最有利于上升运动和降雪;降雪区上空垂直螺旋度均为正或呈"上负下正"的垂直结构均有利于降雪,低层正垂直螺旋度对强降雪变化有很好的指示意义。  相似文献   

16.
2009年冬季华北初雪对流层低层风场及 大气层结特征   总被引:2,自引:0,他引:2  
对2009年冬季我同华北一次回流初雪天气进行了数值模拟和诊断分析,重点研究了与回流相关的对流层低层风场的动力热力作用以及大气层结特征.结果表明:初雪是存高空低压槽、低空回流切变线以及地面倒槽锋生的共同影响下产生的,降雪区域随着影响系统向东南方向移动而移动;对降雪起到重要动力作用的偏东风回流主要出现在850 hPa及以下层次,其发展一方面与偏西气流形成低空风场辐合线,有利于气流的上升运动,一方面在地形的共同作用下,形成偏南风;偏南风的形成有利于暖空气向降雪区域输送,而暖平流与强冷空气相遇引起了锋生;偏东风回流除了起到重要的动力作用外,热力作用也很明显,其对降雪区域的水汽辐合起到了主要作用;在降雪发生时,对流层低层有明显的降温过程,大气边界层温度降到了0℃以下,850 hPa温度降至-5℃左右,该结果表明冬季关注数值模式模拟的对流层低层温度层结特征,将有助于对降水性质做出更准确的预报.  相似文献   

17.
山东半岛一次持续性强冷流降雪过程的成因分析   总被引:7,自引:4,他引:3  
利用NCEP/NCAR逐日6 h再分析资料和观测资料,诊断分析了2005年12月3~21日山东半岛北部沿海地区发生的罕见持续性强降雪过程.结果表明: 降雪以西北气流下的冷流降雪为主,具有典型冷流降雪分布特征;有利的大气环流形势造成强冷空气频繁,经过渤海暖海面时产生较大海气温差,是降雪持续时间长、强度大的直接原因;一定的海气温差是冷流降雪的重要指标,产生冷流降雪时山东北部近海海域的海气温差常在22K以上;冷流暴雪产生在高能舌、对流层低层辐合、中层辐散的上升运动区,上升运动层浅薄;水汽来源于渤海,水汽辐合层位于超低层(925 hPa高度以下);对流层中低层的垂直速度、散度场、涡度场的动力耦合结构配置有利于暴雪的形成和维持;特殊的低山丘陵地形强迫抬升是冷流降雪的触发机制,对暴雪的产生起到增幅作用.  相似文献   

18.
利用2007年祁连山地形云的观测试验资料,分析了祁连山夏季西南气流背景下地形云的演化过程,得到了祁连山地形云发展和演变的概念模型。(1)祁连山地形云的水汽主要分布在3500~6500m的范围内,对流层中层的西南气流将水汽由南向北输送到祁连山区。(2)祁连山区水汽比较丰沛,凝结高度和自由对流高度均较低,当湿气团抬升到凝结高度以上时对流有效位能很容易释放,形成有利于产生降水的云系。(3)祁连山每个山峰南北侧昼间的谷风会在山峰辐合抬升,众多山峰形成的祁连山群谷风的抬升作用下容易形成沿山脊排列的中β对流云带,在高空西南气流的推动下移到北侧,是造成北侧降水比南侧大的原因之一。  相似文献   

19.
2009年山东一次特殊雨雪天气的云物理特征分析   总被引:3,自引:0,他引:3  
利用探空、CloudSat卫星、山东自动气象站及NCEP再分析资料,对2009年11月11-12日山东西部大暴雪过程的天气形势、云物理特征及动力场结构特征进行了分析。结果表明:(1)700hPa切变线和西南急流是造成暴雪的直接影响系统,中低层偏南风急流与冷空气交汇形成较强的动力辐合和水汽辐合,有利于天气系统的发展和增强。(2)暴雪区上空水平能量锋区明显,垂直方向上等θse线密集且随高度向北显著倾斜,为暴雪的产生提供了重要的热力条件。(3)强降雪发生前,低层冷空气的南侵触发了暴雪系统的发展;暴雪强盛期,高层气旋性环流促使暴雪区中高层西南暖湿气流输送加强;暴雪后期,冷空气加强并逐渐控制了中低层,切断了暖湿气流的供应,导致降雪逐渐停止。(4)上升气流有助于水汽的输送和云滴、冰晶、雪晶粒子之间的碰并、淞附,冰水含量大值区与上升速度大值区相一致,冰晶数浓度中心对应着上升运动顶部。高层冰晶下落过程中经过凝华、结淞及碰连增长在低层形成数浓度较低的大冰相粒子,为降水发展提供了有利条件。(5)结合CloudSat卫星资料、NCEP再分析资料及探空秒数据,分析了一定动力条件下暴雪云系的物理过程和垂直演变特征。  相似文献   

20.
两个路径相似台风暴雨过程的模拟分析   总被引:6,自引:1,他引:6  
以两个路径相似的台风"海棠"和"凤凰"为研究对象,利用MM5模式对其二次登陆过程进行模拟并通过与实况的对比表明,模式对台风路径和暴雨的模拟是成功的。利用模式输出从动力、水汽、不稳定层结和地形等四方面对暴雨落区和强度进行诊断,结果表明:低层螺旋度正值区与未来12 h暴雨落区有良好对应关系,高层螺旋度负值区偏离暴雨区,螺旋度高低层耦合产生的倾斜上升气流是触发和维持台风暴雨的动力机制。在台风登陆过程中,浙南闽北一直有源源不断的水汽输入,登陆点北侧水汽输送大于南侧是造成台风降水非对称分布的重要原因。台风由暖洋面移入大陆"冷场"加强了不稳定层结,在"海棠"台风暴雨过程中,弱冷空气侵入台风环流,触发不稳定能量释放在暴雨增幅中起了重要作用,暴雨出现在相当位温等值线密集的向北倾斜锋区。地形对暴雨的增幅作用十分显著,迎风坡由于地形动力抬升有利于上升运动加强,使得对流发展旺盛,降水增加,形成暴雨中心。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号