首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
利用2014年本溪市大气颗粒物质量浓度监测资料和风速、气温、相对湿度、气压等常规地面气象要素观测资料,分析了本溪地区大气颗粒物质量浓度的月、季变化特征及其与气象要素的相关性。结果表明:2014年7月和10月本溪市大气颗粒物质量浓度较高,5月和9月大气颗粒物质量浓度较低,6月和11月大气颗粒物质量浓度比值较高。夏季PM10质量浓度较低,平均浓度为115.1μg·m~(-3);冬季PM_(2.5)和PM_(1.0)质量浓度较高,平均浓度分别为99.5μg·m~(-3)和86.1μg·m~(-3)。春季和冬季平均风速与大气颗粒物质量浓度的相关性最好,夏季和冬季相对湿度与大气颗粒物质量浓度的相关性最好。当ρ(PM_(2.5))≥200.0μg·m~(-3)时,ρ(PM_(2.5))与平均气温呈显著的正相关关系,相关系数为0.5288,ρ(PM_(2.5))与相对湿度的相关系数也高达0.6981,高温、高湿和小风等气象条件是本溪地区大气颗粒物高质量浓度事件发生的有利气象条件。  相似文献   

2.
利用MODIS AOD(Aerosol Optical Depth)3 km分辨率的L2产品并辅以地面气象测量站点和环保监测站点的逐小时数据,对2017—2018年南京地面各站点进行数据匹配,分析估算PM_(2.5)的各相关组合因子,然后利用GA-BP神经网络算法构建卫星数据辅以地面气象数据来估算PM_(2.5)质量浓度的机器学习模型。结果表明:(1)GA-BP神经网络算法对PM_(2.5)进行估算是有效可行的,且比BP效果改善明显。(2)在多源数据的各输入变量中,选择AOD变量加辅助变量的GA-BP算法模型共构建了9组分季节试验,其中应用在2017年数据的试验6最好,表现为秋季冬季夏季春季,秋季R~2最大为0.91(RMSE为11.79μg·m~(-3)),春季R~2最小为0.65(RMSE为8.67μg·m~(-3))。  相似文献   

3.
O_3和PM_(2.5)是影响长三角地区空气质量的主要污染物。利用2016年33个城市大气环境监测站6项污染物的小时浓度及4个省会城市的气象数据进行统计分析,研究了该地区O_3和PM_(2.5)浓度的时空分布特征及其影响因素。结果表明:长三角地区O_3年平均浓度为50~73μg·m~(-3),平均为61μg·m~(-3);除芜湖和宣城外,其余31城市均存在不同程度的超标状况,超标率为0.34%~18.86%,平均为5.68%。O_3在5月和9月达到浓度高值;四季O_3日变化均呈单峰型,峰值出现在15∶00,夏季O_3峰值浓度最高值为157μg·m~(-3)。O_3浓度沿海城市整体高于内陆城市;夏季宿迁—淮安—滁州片区O_3污染较重。O_3与NO_2、CO显著负相关,且与NO_2相关性较强;O_3与气温、日照时数显著正相关,与相对湿度、降水呈负相关。PM_(2.5)年平均浓度在25~62μg·m~(-3)范围内,平均为49μg·m~(-3);各城市均出现PM_(2.5)超标,滁州PM_(2.5)超标率最大,为23.91%。PM_(2.5)在3月和12、1月达到浓度峰值;其日变化呈双峰型,09∶00—10∶00和22∶00—23∶00达到峰值。冬季徐州PM_(2.5)浓度最高,为102μg·m~(-3)。PM_(2.5)与NO_2、CO、SO_2、PM_(10)显著正相关,与气温、风速、降水负相关。  相似文献   

4.
利用阿勒泰平原地区阿克达拉大气本底站2010年1月1日—2016年12月31日的臭氧质量浓度数据与PM_(10)等相关气象资料相结合,对臭氧质量浓度的日、周、月、季节、年变化特征以及影响臭氧浓度变化的主要因素进行了分析。结果分析表明:臭氧每小时平均质量浓度日变化规律呈显著单峰型,夜晚的变化较小,白天变化较大,01:00前后达到最小值,16:00左右达到峰值;臭氧每日平均质量浓度变化不具有较为明显的"周末效应"现象,峰值出现在星期六,日平均质量浓度为63.2μg·m~(-3),最低值出现在星期一,日平均质量浓度为60.0μg·m~(-3),日平均质量浓度最高值和最低值仅相差3.2μg·m~(-3);臭氧月平均质量浓度最高出现在2014年5月,为85.1μg·m~(-3),最低月平均质量浓度出现在2015年11月,为32.2μg·m~(-3);春、夏季臭氧质量浓度较高,秋季和冬季明显低于春季和夏季;2010—2016年臭氧浓度趋势线整体呈下降趋势,其中2012—2014年臭氧浓度连续月变化有明显的单峰型年度变化规律;臭氧浓度与PM_(10)质量浓度变化具有明显的逆向变化趋势,同时存在时间变化上的延迟性,并且臭氧的浓度变化早于PM_(10)质量浓度的变化。  相似文献   

5.
为深入了解晋城市颗粒物浓度时空分布特征,对晋城市2017年12月至2018年5月国控点、小型站和微型站PM_(2.5)及PM_(10)小时浓度数据进行收集整理,并进行空间插值分析和时间变化趋势分析及与气象监测数据的相关分析。结果表明:颗粒物浓度在冬、春季节具有明显差异,冬季PM_(10)与PM_(2.5)高值区主要位于东北部及东南小部分区域,春季PM_(10)高值区位于城区南部区域,PM_(2.5)高值区主要集中于城区。晋城市城区和郊区PM_(10)与PM_(2.5)月均浓度整体呈单峰型变化,PM_(10)在4月份最高(157.54±5.67μg·m~(-3)),PM_(2.5)在1月份最高(94.08±2.25μg·m~(-3))。冬季PM_(2.5)/PM_(10)平均为0.57,春季平均为0.45。颗粒物小时浓度的变化呈现单峰单谷的型式,冬季PM_(10)与PM_(2.5)小时平均浓度最高值均出现在10时,春季均出现在09时。监测期间晋城市PM_(10)与PM_(2.5)的小时浓度值与相对湿度有较高的正相关性(p0.01),与风速、风向有较高的负相关性(p0.01),与温度和气压的相关性较低。冬季,东北至正南风向时,PM_(10)与PM_(2.5)的浓度普遍高于西北风向时的浓度,对晋城冬、春季国控点颗粒物浓度贡献率最高的风向风速为东南偏南风向,风速在1 m/s以内。  相似文献   

6.
通多对德州PM_(2.5)和PM_(10)浓度特征分析得出:德州PM_(2.5)和PM_(10)浓度年平均值分别为82.3μg/m~3和144.3μg/m~3,PM_(2.5)和PM_(10)浓度明显超过二级标准。PM_(2.5)占PM_(10)的63%,二者呈明显的正相关,相关系数为0.8695。一天内,PM_(2.5)和PM_(10)浓度呈双峰型,最大值出现在8-10时,其次出现在22时;最低值出现在17时。一年内,4~9月PM_(2.5)和PM_(10)浓度较小,8月份最小,PM_(2.5)浓度月均值为44.1μg/m~3。10~次年3月,PM_(2.5)和PM_(10)浓度较大,12月份最大,PM_(2.5)浓度月均值为201.2μg/m~3。统计发现:降水、绿色植被、水域能有效降低PM_(2.5)和PM_(10)浓度。  相似文献   

7.
基于2013年武汉市环境监测数据和气象要素资料,分析该市空气质量状况与气象条件的关系。结果表明,武汉市全年平均空气质量指数(AQI)为135,良和轻度污染所占比例分别为35%和30%。雾天、霾天、晴天、雨天四种天气条件下,6种污染物(SO_2、NO_2、CO、O_3、PM_(2.5)和PM_(10))浓度值基本上为雾天最高、霾天次之、晴天再次之、雨天最低,雾天00—08时污染物浓度明显高于其他天气条件;PM_(2.5)浓度与降水量的相关性较差,中雨量级时,降水对污染物的清除作用显著,PM_(2.5)浓度下降明显,当日降水量小于1 mm时,PM_(2.5)浓度略有上升,平均上升1.3μg·m~(-3)左右,这与微量降水的大气增湿作用有关;PM_(2.5)浓度变化与相对湿度(RH)和风速的关系较明显,其相关系数分别为0.87和-0.72,当RH70%且每增加10%时,PM_(2.5)浓度增加10μg·m~(-3)左右;静风和风速很大时,污染物浓度相对较高,东南风影响下PM_(2.5)浓度在四季均较高,而秋、冬季在西北风影响下PM_(2.5)浓度最高;PM_(2.5)浓度主要增长阶段以正变温、负变压为主。  相似文献   

8.
为探讨大连市大气能见度特征及其影响因子,揭示低能见度天气成因,利用2010—2012年大连地区大气能见度与地面气象要素(相对湿度、风速、气温、气压)日均值的统计资料,分析了大连地区大气能见度与气象要素的相关性。进一步结合PM_(10)质量浓度的变化特征,分析了两次低能见度事件中的天气成因。结果表明:2010—2012年大连地区年均能见度分别约为13.5 km、13.2 km和13.9 km,高能见度事件多出现在10月—次年2月,低能见度事件多出现在每年6—8月,大连地区低能见度事件每年7月较多,1月较少,2010—2012年大连地区低能见度事件分别出现169、157 d和163 d;2010—2012年PM_(10)质量浓度分别为57.8μg·m~(-3)、67.4μg·m~(-3)和65.9μg·m~(-3),PM_(10)质量浓度高值多出现在每年的4—5月和9—12月,PM_(10)质量浓度低值多出现在1—2月;大气能见度和相对湿度和气温的相关性较好,随着相对湿度的增加,能见度与PM_(10)质量浓度的相关性逐渐减小,当相对湿度大于90%时,能见度与PM_(10)质量浓度相关系数减小至-0.23;两次低能见度事件过程中,2011年10月31日一次辐射平流雾过程中的水汽输送来自西南风气流,2012年4月28日一次浮尘事件过程中的沙尘来自西北方向的沙源。该研究可为空气质量预报提供科学依据参考。  相似文献   

9.
针对兰州大学半干旱气候与环境观测站在敦煌地区的沙尘气溶胶加强观测试验,选取2012年春季自然和污染沙尘两种典型天气个例,利用激光雷达退偏观测的优势分离粗(沙尘)、细(背景气溶胶)粒子,反演并对比分析了沙尘气溶胶消光系数及质量浓度的垂直分布特征。研究发现,以4月26日为代表的自然沙尘,粒子退偏比垂直廓线均大于30%,质量浓度呈现单峰结构,1.5 km出现最大值(1 070μg·m~(-3));以4月6日为代表的污染沙尘,有明显的气溶胶分层现象,粒子退偏比介于5%~20%,沙尘质量浓度介于2~45μg·m-3;由于局地污染的影响,污染沙尘的质量消光系数(0.79m~2·g~(-1))明显大于自然沙尘(0. 48 m~2·g~(-1))。因此,为了准确评估沙尘气溶胶的质量浓度,对沙尘天气进行分类,并利用粒子退偏比有效分离沙尘气溶胶尤为重要。  相似文献   

10.
利用2009-2018年桂林大气成分站的大气气溶胶质量浓度观测资料,分析了PM_(10)、PM_(2.5)、PM_1统计值的变化规律,结果表明:(1)2009-2018年桂林ρ(PM_(10))、ρ(PM_(2.5))、ρ(PM_1)年平均值变化趋势基本相同,2012-2014年,年平均值相对较高,自2015年后有下降的趋势。一年中月变化基本呈冬高夏低的正V字型分布,月平均峰值出现在1月,谷值出现在7月。质量浓度小时平均值从数值上呈现出冬春秋夏的趋势,并呈现明显的双峰分布特征。ρ(PM_(2.5))/ρ(PM_(10))、ρ(PM_1)/ρ(PM_(10))、ρ(PM_1)/ρ(PM10_(2.5))介于60%-93%之间,说明全年可吸入颗粒物中细粒子占大多数。桂林大气气溶胶质量浓度月平均分布规律可能与天气气候特点有密切关系,日变化主要受到气象条件和污染物排放的影响。(2)桂林ρ(PM_(10))、ρ(PM_(2.5))和ρ(PM_1)与日均气温、日均湿度、日降水量、日均风速显著负相关,与日均气压显著正相关。中雨及大雨、暴雨可明显稀释污染物的浓度,细颗粒物易被雨水冲刷清除。2级以上的风力对于污染物有一定的驱散作用,尤其粗颗粒物下降的程度较明显。  相似文献   

11.
广州冬季大气消光系数的贡献因子研究   总被引:12,自引:1,他引:11  
2008年1月1~31日和2月6~24日在广州城区每天采集一个PM2.5样品,对样品进行有机碳、元素碳及水溶性离子分析,利用美国IMPROVE能见度方程计算得到广州冬季大气消光系数.结果发现:冬季PM2.5 日均值质量浓度为89.0±53.4/μg·m~(-3),OC(Organics Carban)质量浓度为16.9±11.9μg·m~(-3),EC(Element Carbon)质量浓度为5.9±3.4 μg·m~(-3),水溶性离子总浓度为43.9±23.5μg·m~(-3).冬季大气消光系数均值为342±185 Mm~(-1).广州冬季大气消光系数主要贡献者为(NH_4)_2SO_4、NH_4NO_3、POM(Par-ticular organic matter)、EC和NO_2,对消光系数的贡献率分别为36.3%、14.5%、26.6%、17.4%和5.2%.  相似文献   

12.
合肥市PM_(2.5)对城市辐射和气温的影响   总被引:2,自引:0,他引:2  
本文利用2013年2月—2014年3月安徽省合肥市地面总辐射(即向下短波辐射)、气温、地面温度、相对湿度等气象资料和PM_(2.5)浓度资料,分析了合肥地区PM_(2.5)和地面总辐射、地温和气温的关系,研究发现:(1)PM_(2.5)浓度是影响总辐射的重要人为因子,在中午无云条件下,地面总辐射与PM_(2.5)的浓度呈现较强的负相关关系,相关系数为-0.62。归一化地面总辐射和PM_(2.5)的相关系数为-0.76,在早晨和傍晚的相关系数较小。平均而言,白天无云时PM_(2.5)浓度每增加1μg·m-3,地面总辐射下降0.92 W·m-2。(2)在白天无云时,气温、地面温度和PM_(2.5)浓度有明显负相关关系,PM_(2.5)浓度对地面温度的影响远大于对气温的影响,在夏季的影响高于其它季节。气温、地温和PM_(2.5)浓度的线性拟合直线的平均斜率分别为-0.022和-0.12,相当于PM_(2.5)浓度增加10μg·m-3,地温和气温分别平均下降0.22℃和1.2℃。(3)在天气尺度上,PM_(2.5)浓度对总辐射、气温和地面温度有非常明显的影响,在2013年9月清洁个例和2013年12月的污染个例中,PM_(2.5)浓度每增加1μg·m-3,将引起总辐射下降1.8 W·m-2和0.5 W·m-2,地温下降0.11℃和0.02℃,气温下降0.03℃和0.01℃,因此在天气预报过程中也需要考虑空气污染状况。  相似文献   

13.
周骥  孙庆华  许建明  彭丽  叶晓芳  杨丹丹 《气象》2018,44(12):1612-1617
为了探讨短时高浓度与相对长时间低浓度下不同的PM_(2.5)污染过程对小鼠急性氧化应激及炎症反应的不同影响,将48只雄性C57BL/6小鼠按体重随机分为6组(n=6),使用人工气候环境暴露仓模拟不同的PM_(2.5)污染过程,分别给予轻度污染组(PM_(2.5)平均浓度为100μg·m~(-3))连续暴露72 h,中度污染组(PM_(2.5)平均浓度为150μg·m~(-3)),连续暴露48 h,重度污染组(PM_(2.5)平均浓度为250μg·m~(-3))连续暴露28. 8 h;每组设置空白对照组。暴露染毒结束后,采用试剂盒法测定C-反应蛋白(CRP)、结构性一氧化氮合酶(cNOS)、同型半胱氨酸(HCY)、白介素-8(IL-8)。低浓度长时间的PM_(2.5)暴露组的CRP、cNOS、IL-8水平显著高于高浓度短时间暴露组,差异性具有统计学意义(P0. 05或P0. 01),cNOS的抑制水平为低浓度长时间组显著高于高浓度短时间组,差异性具有统计学意义(P0. 05或P0. 01)。结论:相同暴露剂量下PM_(2.5)轻度污染持续72 h的健康损害比PM_(2.5)重度污染持续28. 8 h的对健康损害更大,PM_(2.5)中度污染持续48 h的健康损害次之,应重视长时间轻、中度污染对人体健康的影响,适当调整空气质量的预警标准。  相似文献   

14.
根据2008—2015年上海崇明东滩大气成分观测站(以下简称东滩站)大气颗粒物(PM)观测数据,分析其浓度水平、变化趋势、影响气团和潜在源区。结果表明,2008—2015年东滩站PM质量浓度的长期变化趋势不显著,但细粒子(PM_(2.5))比例不断升高。PM_(2.5)/PM_(10)从0.84上升至0.92,表明二次气溶胶占比趋于增加。对8年大样本数据进行后向轨迹聚类,发现东滩站主要受大陆型、海洋型、大陆/海洋混合型气团影响,三者所占比率分别为32.0%、38.8%、29.3%。海洋型气团中PM_(2.5)本底质量浓度为11~15μg·m^(-3),而大陆型气团中PM_(2.5)本底质量浓度的季节差异显著,在29~56μg·m^(-3)波动,对东滩站具有明显的输入效应。东滩站PM_(2.5)的潜在源区随季节变化,秋季和冬季主要受华北、黄淮、苏皖影响,春季收缩至苏皖和浙江北部,夏季则转换至长三角南部的浙江及浙闵沿海。总体而言,上海及周边的苏锡常、杭嘉湖对东滩PM_(2.5)浓度贡献最显著,来自渤海、黄海近海污染回流的贡献也不可忽视。  相似文献   

15.
利用2016年10月—2019年9月太原地区逐时能见度、相对湿度及颗粒物质量浓度等观测数据,研究分析了大气能见度与相对湿度及PM_(2.5)质量浓度的关系,采用神经网络方法,构建了能见度与相对湿度及颗粒物质量浓度的非线性模型,并利用2019年10月—12月气象小时数据对该模型进行了检验。结果表明:(1)太原不同季节能见度日变化特征明显,春夏秋季能见度在06时左右最低,冬季在09时左右最低;从空间分布上看,太原地区能见度南北差异明显,北部能见度高于南部。(2)细颗粒物质量浓度与相对湿度对大气能见度变化都有明显影响。PM_(2.5)质量浓度与能见度之间存在幂函数非线性关系,在40%≤相对湿度60%的区段内相关性最强,PM_(2.5)质量浓度与10 km能见度对应的阈值随相对湿度升高而减小,范围为5~103μg/m~3。(3)采用神经网络方法构建能见度与相对湿度及颗粒物质量浓度的关系模型,相关系数为0.81。利用太原地区2019年10—12月逐时气象观测数据对模型进行检验,均方根误差为5.29 km,平均绝对百分误差为31.45%,轻微级霾情况下模拟能见度TS评分为0.86,误差呈现正态分布,误差小于4 km的比例达72.99%。该模型对研究太原地区能见度具有较高的参考价值。  相似文献   

16.
京津冀地区气溶胶光学厚度反演及其空间分布特征   总被引:1,自引:0,他引:1  
利用2014年9月1日至2015年5月31日Terra/MODIS MOD 021KM数据,以京津冀地区为研究区域,采用深蓝算法和查找表法反演京津冀地区1 km分辨率的气溶胶光学厚度,并将反演的气溶胶光学厚度与NASA产品和CE-318观测的气溶胶光学厚度进行比较。结果表明:反演的气溶胶光学厚度与NASA MOD 04_L2(10 km×10 km)和MOD 04_3K(3 km×3 km)两种气溶胶产品的空间分布具有高度的一致性,且空间分辨率更高;反演的气溶胶光学厚度与石家庄站CE-318观测气溶胶光学厚度的平均绝对误差为0.07左右,二者之间的相关系数R~2=0.956。卫星过境时,1 km反演的气溶胶光学厚度与MOD 04_L2气溶胶产品的平均误差约为0.06,反演的气溶胶光学厚度与MOD 04_3K气溶胶产品的平均误差约为0.03。对反演的气溶胶光学厚度与河北省PM_(2.5)和PM_(10)质量浓度的空间分布进行相关性分析表明,气溶胶光学厚度AOD与PM_(2.5)和PM_(10)质量浓度的相关系数分别为0.745、0.663,说明1 km反演的AOD可以有效反映区域PM_(2.5)和PM_(10)质量浓度的空间分布。  相似文献   

17.
通过对2015年1—12月上海崇明岛崇南地区颗粒物(PM_(2.5)、PM_(10))浓度的连续监测,研究了PM_(2.5)、PM_(10)在不同季节的动态变化特征及与其他因子(SO_2、NO_2、O_3)的相关性,分析了风向风速和降雨对颗粒物浓度的影响。结果表明:崇明岛PM_(2.5)和PM_(10)浓度的季节变化明显,呈现冬季的春季的秋季的夏季的的特征,冬季PM_(2.5)和PM_(10)小时浓度均值分别为0.058 mg/m~3和0.085 mg/m~3,夏季PM_(2.5)和PM_(10)均值分别为0.034 mg/m~3和0.054 mg/m~3。PM_(2.5)和PM_(10)浓度分别与SO_2浓度和NO_2浓度显著正相关,与O_3显著负相关。全年来看,在西南风向时PM_(2.5)和PM_(10)浓度较高,这主要受该方向上游吴淞工业区、宝钢、石洞口电厂、罗店工业区等工业排放影响;从高浓度颗粒物(PM_(2.5)质量浓度≥0.115 mg/m~3)来向看,北和西北风向时出现高浓度颗粒物的频率最高,这主要是受到我国北方采暖季大气颗粒物输送过程对崇明岛区域的脉冲式污染影响所致;PM_(2.5)、PM_(10)实时浓度与相应的风速呈显著负相关。降雨量大于5 mm或持续3 h及以上的连续降雨对大气颗粒物起到显著的湿清除作用,降雨后PM_(2.5)和PM_(10)质量浓度分别降低了68.0%和66.9%,降雨时和雨后PM_(2.5)浓度为0.025~0.033 mg/m~3,均低于我国环境空气PM_(2.5)的一级浓度限值。  相似文献   

18.
华北平原大气污染与低能见度状况一直是人们关切的问题.本文通过分析2014-2017年PM_(2.5)化学成分的浓度和消光效果,研究了华北平原典型城市保定市的大气污染特征.结果表明,PM_(2.5)分的年均浓度显示下降趋势,水溶性无机离子,碳质气溶胶和金属元素分别减少了11μg m~(-3),23μg m_(-3)和1796 ng m_(-3).NH_4~+,NO_3~-和SO_4~(2-)是PM_(2.5)污染的主要污染物,三者之和占总离子浓度的82.9%.基于IMPROVE方程对细颗粒物进行重构,在观测期间PM_(2.5)质量浓度平均为93±69μg m~(-3),春季,夏季,秋季和冬季的消光系数分别为373.8±233.6 M m~(-1)±,405.3±300.1 M m~(-1),554.3±378.2 M m~(-1)和1005.2±750.3 M m~(-1).硫酸铵,硝酸铵和有机物对消光的贡献最大,不同季节下占比达55%~77%.通过PM_(2.5)组分进行重构,利用IMPROVE算法计算得到Rbsca,用能见度测量值转换得到Vbsca,二者具有较高的相关性(r2=0.84);但存在Vbsca的高值被低估,Vbsca的低值被高估的现象;特别是当Rbsca 1123 M m~(-1)(对应能见度约小于2.0 km)时,Vbsca的值被低估了17.6%.高浓度PM_(2.5)和高湿度对IMPROVE算法结果有显著的影响.  相似文献   

19.
利用中国气象局秦岭气溶胶与云微物理野外科学试验基地扫描电迁移率粒径谱仪(SMPS, scanning mobility particle sizer, Model 3034)观测的2017年11月1—30日颗粒物粒径谱数据,给出西安9次新颗粒物生成(new particle formation, NPF)事件的统计特征,并结合3次PM_(2.5)污染过程,讨论NPF事件与西安PM_(2.5)污染的可能关系。结果表明:(1)NPF事件一般发生在中午到下午,新颗粒物生成后峰值粒径增长速率平均值为5.1±1.8 nm·h~(-1),凝结核模态颗粒物数浓度的最大净增长量(net maximum increase in nucleation mode particles number concentration, NMINP)平均值为0.63×10~4 cm~(-3),NPF事件不仅增加了大气中凝结核模态颗粒物数浓度,还增加了爱根核模态和积聚模态颗粒物数浓度;NPF事件有67%存在粒径的持续增长,其中3次事件峰值粒径增长最为显著,最大值增长至175 nm附近。(2)NPF事件发生后,大气中PM_(2.5)质量浓度随颗粒物峰值粒径增大呈增高趋势。(3)3次NPF事件到PM_(2.5)污染过程中PM_(2.5)质量浓度与峰值粒径、积聚模态颗粒物数浓度和凝结汇均呈现指数正相关关系,当峰值粒径为100~120 nm时,PM_(2.5)质量浓度高于75μg·m~(-3),积聚模态颗粒物数浓度持续高于其他两个模态颗粒物数浓度,出现PM_(2.5)污染。  相似文献   

20.
李苹  余晔  赵素平  董龙翔  闫敏 《高原气象》2019,38(6):1344-1353
利用2015-2017年环保部发布的近地面臭氧(O_3)和其他3种污染物[粒径小于2. 5μm的颗粒物(PM_(2.5))、一氧化碳(CO)、二氧化氮(NO_2)]小时浓度数据和美国国家气候资料中心收集的气象要素监测数据,分析了中国近地面O_3污染状况,并用逐步回归方法分析了影响O_3重污染区域夏季近地面O_3浓度的因素。结果表明,2015-2017年我国O_3日最大8 h滑动平均浓度(O_3MDA8)年平均值分别为83.02±16. 79,87. 05±14. 32和94. 70±13. 89μg·m~(-3)。O_3MDA8浓度逐年增长(增长率14. 07%),其中冬季增长最快(增长率范围14. 67%~34. 32%),夏季增长最慢(增长率范围2. 32%~14. 16%)。京津冀、长三角、山东半岛、川渝和中原地区近地面O_3污染较重,影响这5个区域近地面O_3浓度的主要因素为温度、相对湿度和PM_(2.5),除此之外京津冀和川渝地区的近地面O_3浓度受NO_2影响明显,中原地区的近地面O_3浓度受CO影响明显。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号