首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 18 毫秒
1.
O_3和PM_(2.5)是影响长三角地区空气质量的主要污染物。利用2016年33个城市大气环境监测站6项污染物的小时浓度及4个省会城市的气象数据进行统计分析,研究了该地区O_3和PM_(2.5)浓度的时空分布特征及其影响因素。结果表明:长三角地区O_3年平均浓度为50~73μg·m~(-3),平均为61μg·m~(-3);除芜湖和宣城外,其余31城市均存在不同程度的超标状况,超标率为0.34%~18.86%,平均为5.68%。O_3在5月和9月达到浓度高值;四季O_3日变化均呈单峰型,峰值出现在15∶00,夏季O_3峰值浓度最高值为157μg·m~(-3)。O_3浓度沿海城市整体高于内陆城市;夏季宿迁—淮安—滁州片区O_3污染较重。O_3与NO_2、CO显著负相关,且与NO_2相关性较强;O_3与气温、日照时数显著正相关,与相对湿度、降水呈负相关。PM_(2.5)年平均浓度在25~62μg·m~(-3)范围内,平均为49μg·m~(-3);各城市均出现PM_(2.5)超标,滁州PM_(2.5)超标率最大,为23.91%。PM_(2.5)在3月和12、1月达到浓度峰值;其日变化呈双峰型,09∶00—10∶00和22∶00—23∶00达到峰值。冬季徐州PM_(2.5)浓度最高,为102μg·m~(-3)。PM_(2.5)与NO_2、CO、SO_2、PM_(10)显著正相关,与气温、风速、降水负相关。  相似文献   

2.
河北石家庄市近地层臭氧浓度特征及气象条件分析   总被引:1,自引:0,他引:1  
利用2016年3月至2018年2月河北石家庄市环境监测站O_3及其前体物质量浓度逐时和逐日观测资料,以及气象站逐日气象观测数据,分析石家庄市近地层O_3质量浓度的时间变化特征及其与前体物NO_2、CO和气象条件的关系。结果表明:石家庄市O_3污染2017年比2016年严重,2017年比2016年O_3超标日数增加30 d,超标率上升8%,O_3年平均质量浓度上升17μg·m~(-3)。O_3质量浓度具有明显的季节变化特征,自夏季、春季、秋季、冬季依次降低,5—9月O_3质量浓度较高,平均值超过160μg·m~(-3),6月达到峰值208μg·m~(-3)。O_3质量浓度的日变化表现为单峰型分布,最低值出现在07:00左右,峰值在14:00—16:00。太阳辐射强、气温高、日照时数长、能见度好、无降水和相对湿度较低的条件下,石家庄市易出现O_3浓度超标天气。前体物NO_2、CO与O_3质量浓度之间夏季呈现显著正相关,而冬季则呈显著负相关。  相似文献   

3.
利用2014年本溪市大气颗粒物质量浓度监测资料和风速、气温、相对湿度、气压等常规地面气象要素观测资料,分析了本溪地区大气颗粒物质量浓度的月、季变化特征及其与气象要素的相关性。结果表明:2014年7月和10月本溪市大气颗粒物质量浓度较高,5月和9月大气颗粒物质量浓度较低,6月和11月大气颗粒物质量浓度比值较高。夏季PM10质量浓度较低,平均浓度为115.1μg·m~(-3);冬季PM_(2.5)和PM_(1.0)质量浓度较高,平均浓度分别为99.5μg·m~(-3)和86.1μg·m~(-3)。春季和冬季平均风速与大气颗粒物质量浓度的相关性最好,夏季和冬季相对湿度与大气颗粒物质量浓度的相关性最好。当ρ(PM_(2.5))≥200.0μg·m~(-3)时,ρ(PM_(2.5))与平均气温呈显著的正相关关系,相关系数为0.5288,ρ(PM_(2.5))与相对湿度的相关系数也高达0.6981,高温、高湿和小风等气象条件是本溪地区大气颗粒物高质量浓度事件发生的有利气象条件。  相似文献   

4.
利用北京南郊观象台2016年3月1日-2017年2月28日β射线法与TEOM法观测的PM_(10)质量浓度观测数据,通过t检验、线性回归和相关分析等方法对两种方法观测的小时、日、周、月、季等数据进行相关性分析。结果表明:两种方法观测的PM_(10)小时平均质量浓度总体的线性回归方程相关系数R~2为0.870;在低浓度范围(PM_(10)50μg·m~(-3))时二者为微弱相关(R~2=0.073);中等浓度范围(50μg·m~(-3)≤PM_(10)350μg·m~(-3))时二者为低度相关(R~2为0.257~0.346);高浓度范围(PM_(10)≥350μg·m~(-3))时二者为高度相关(R~2=0.686)。二者日平均PM_(10)质量浓度数据总体的R~2为0.929;二者PM_(10)质量浓度小时数据周相关系数为0.598~0.980。二者月平均PM_(10)质量浓度数据间的相关系数为0.628~0.976;二者季节的R~2为0.627~0.944,呈现冬季的秋季的春季的夏季的。由此可发现,两种观测方法观测的PM_(10)质量浓度的结果总体呈显著性的线性相关关系,且浓度越高,相关性越强。  相似文献   

5.
通多对德州PM_(2.5)和PM_(10)浓度特征分析得出:德州PM_(2.5)和PM_(10)浓度年平均值分别为82.3μg/m~3和144.3μg/m~3,PM_(2.5)和PM_(10)浓度明显超过二级标准。PM_(2.5)占PM_(10)的63%,二者呈明显的正相关,相关系数为0.8695。一天内,PM_(2.5)和PM_(10)浓度呈双峰型,最大值出现在8-10时,其次出现在22时;最低值出现在17时。一年内,4~9月PM_(2.5)和PM_(10)浓度较小,8月份最小,PM_(2.5)浓度月均值为44.1μg/m~3。10~次年3月,PM_(2.5)和PM_(10)浓度较大,12月份最大,PM_(2.5)浓度月均值为201.2μg/m~3。统计发现:降水、绿色植被、水域能有效降低PM_(2.5)和PM_(10)浓度。  相似文献   

6.
根据杭州1994—2017年24时次观测的大气能见度及同期地面气象要素(风速、气温、降水量和相对湿度等)、2013—2017年PM_(2.5)监测数据,探讨杭州市大气能见度的特征以及相对湿度、PM_(2.5)对能见度的影响。统计分析表明,杭州大气能见度的年、季、日变化特征明显,在经历2003—2014年低能见度天气多发后,2016—2017年能见度明显转好,特别是2017年均能见度达到11.6 km,为1994年以来最高值;一年之中,冬季能见度较低,夏季能见度较高;一日之中,早晨07:00能见度最差,午后15:00最好。能见度的转好与PM_(2.5)关系密切,当PM_(2.5)质量浓度在50μg·m^(-3)以下,每降低5μg·m^(-3)可以使能见度显著增加。  相似文献   

7.
2013年夏季至2014年春季在中国长三角区域的临安大气本底站利用气溶胶质谱仪(AMS)对PM_1中主要化学成分质量浓度以及质量-粒度分布进行观测,发现观测期间PM_1的平均浓度约为53μg/m~3,其中有机物是最主要的成分(约占47%),其次为硫酸盐(23%)、硝酸盐(16%)、铵盐(12%)和氯化物(1.2%)。PM_1平均浓度冬季最高(84μg/m~3),秋季最低(38μg/m~3)。冬季污染时段PM_1浓度较清洁时段高24倍,其中硝酸盐浓度冬季升高最显著,这与冬季燃煤排放增加和低温有利其形成有密切联系。不同化学成分中,有机物粒度分布峰值粒径最小,硫酸盐最大。冬季各化学成分的峰值粒径在4个季节中最大(约600 nm),可能由于污染物积聚时间较长。夏季各成分峰值粒径最小(400~500 nm),且在夏季清洁时段浓度较其他季节高,局地产生的新粒子贡献可能很重要,伴随着光化学烟雾的气溶胶和臭氧污染在这些区域升高值得进一步关注。  相似文献   

8.
为探讨大连市大气能见度特征及其影响因子,揭示低能见度天气成因,利用2010—2012年大连地区大气能见度与地面气象要素(相对湿度、风速、气温、气压)日均值的统计资料,分析了大连地区大气能见度与气象要素的相关性。进一步结合PM_(10)质量浓度的变化特征,分析了两次低能见度事件中的天气成因。结果表明:2010—2012年大连地区年均能见度分别约为13.5 km、13.2 km和13.9 km,高能见度事件多出现在10月—次年2月,低能见度事件多出现在每年6—8月,大连地区低能见度事件每年7月较多,1月较少,2010—2012年大连地区低能见度事件分别出现169、157 d和163 d;2010—2012年PM_(10)质量浓度分别为57.8μg·m~(-3)、67.4μg·m~(-3)和65.9μg·m~(-3),PM_(10)质量浓度高值多出现在每年的4—5月和9—12月,PM_(10)质量浓度低值多出现在1—2月;大气能见度和相对湿度和气温的相关性较好,随着相对湿度的增加,能见度与PM_(10)质量浓度的相关性逐渐减小,当相对湿度大于90%时,能见度与PM_(10)质量浓度相关系数减小至-0.23;两次低能见度事件过程中,2011年10月31日一次辐射平流雾过程中的水汽输送来自西南风气流,2012年4月28日一次浮尘事件过程中的沙尘来自西北方向的沙源。该研究可为空气质量预报提供科学依据参考。  相似文献   

9.
利用2013—2015年廊坊市环境监测数据及同期气象资料,采用相关分析等统计方法,分析廊坊市臭氧浓度的日变化特征、超标规律以及气象因素对其的影响。结果表明:臭氧浓度的日变化特征明显,为"1谷1峰"型,每日07:00—08:00左右达到谷值,15:00—16:00达到峰值;臭氧超标只集中出现在春季、夏季与秋季的部分月份,1—3月、11—12月不存在臭氧超标情况,超标现象日变化特征明显,主要出现在11:00—20:00。气象因素对臭氧浓度的影响很大,风向为西南风与东南风时臭氧超标率较高;臭氧超标时,地面天气类型主要为高压后部或高压底部,高空天气类型主要为脊前西北气流或平直西风环流;臭氧浓度与相对湿度呈显著负相关,与温度、日照呈显著正相关。  相似文献   

10.
基于环境空气质量监测数据,本文分析了2022年6月14—18日高温热浪期间江苏省臭氧污染过程的时空变化特征,并结合天气形势、WRF-CMAQ模拟和典型城市大气超级站挥发性有机物(VOCs)在线监测数据进行了成因分析。结果表明:高温热浪期间,江苏省13个地级城市臭氧污染超标率达96.9%,中度污染超标率为27.6%,臭氧日最大8 h(MDA8 O 3)峰值质量浓度高达260.0μg·m^(-3)。南通市、无锡市、苏州市3个典型城市臭氧质量浓度的日变化特征显示,07—13时臭氧质量浓度增长率在27.9%~46.7%,多个时段净增量超过40.0μg·m^(-3)。利用WRF-CMAQ模型对污染过程进行了数值模拟、过程分析和溯源分析。结果显示,典型城市白天小时平均光化学贡献在24.5~33.0μg·m^(-3)之间,稳定高值的光化学贡献,叠加持续稳定或突发的传输贡献,导致此次高温热浪下臭氧质量浓度爆发式升高,出现峰值污染。在偏南风的影响下,省外污染源来自浙江省贡献最高,在13.9%~33.8%,其中无锡市和苏州市受浙江省外源影响较大。此外南通市大气超级站VOCs在线监测结果显示,臭氧污染期间逐日VOCs体积分数在45.5×10^(-9)~83.6×10^(-9)之间,整体处于高值水平,臭氧生成潜势(OFPs)贡献排名前十的物种以烯烃和芳香烃物质为主。  相似文献   

11.
利用不同气候背景代表城市北京、沈阳、银川、成都、南京和广州6个城市2014-2016年臭氧质量浓度和同期气象要素数据,对典型城市臭氧(O_3)浓度变化特征及其与气象条件的关系进行研究。结果表明:2014-2016年臭氧年平均浓度由高到低的顺序为南京沈阳北京银川成都广州,3年间广州臭氧浓度呈下降趋势,沈阳变化不大,其他城市总体呈上升趋势,其中,银川增幅最大,北京增幅最小;臭氧浓度月变化特征受纬度影响较大,随纬度增高单峰结构越明显,且各月郊区臭氧普遍高于市区;各城市臭氧日最大值出现在15:00(北京时,下同)-16:00,最小值出现在07:00-08:00,但其峰值、谷值及日变幅有明显差异,广州全天郊区臭氧都显著高于市区,其他城市则不同,11:00-17:00间两者差别较小,成都、南京、银川郊区峰值浓度甚至略低于市区,其余时段郊区高于市区;6个城市影响臭氧变化最主要的气象要素均是气温和日照时数,其次是相对湿度,再次是风速,气温高、日照长、湿度低有利于臭氧生成,相对而言,对于日照时间较长的北京、银川和沈阳,臭氧对气温的变化较其他城市更敏感,且与风速呈弱的正相关,而对于气温、湿度较高的广州、南京和成都,臭氧与日照时数和相对湿度的相关性较其他3个城市强,且与风速呈弱的负相关;城区臭氧与气象要素相关性普遍较郊区好。  相似文献   

12.
基于2013年武汉市环境监测数据和气象要素资料,分析该市空气质量状况与气象条件的关系。结果表明,武汉市全年平均空气质量指数(AQI)为135,良和轻度污染所占比例分别为35%和30%。雾天、霾天、晴天、雨天四种天气条件下,6种污染物(SO_2、NO_2、CO、O_3、PM_(2.5)和PM_(10))浓度值基本上为雾天最高、霾天次之、晴天再次之、雨天最低,雾天00—08时污染物浓度明显高于其他天气条件;PM_(2.5)浓度与降水量的相关性较差,中雨量级时,降水对污染物的清除作用显著,PM_(2.5)浓度下降明显,当日降水量小于1 mm时,PM_(2.5)浓度略有上升,平均上升1.3μg·m~(-3)左右,这与微量降水的大气增湿作用有关;PM_(2.5)浓度变化与相对湿度(RH)和风速的关系较明显,其相关系数分别为0.87和-0.72,当RH70%且每增加10%时,PM_(2.5)浓度增加10μg·m~(-3)左右;静风和风速很大时,污染物浓度相对较高,东南风影响下PM_(2.5)浓度在四季均较高,而秋、冬季在西北风影响下PM_(2.5)浓度最高;PM_(2.5)浓度主要增长阶段以正变温、负变压为主。  相似文献   

13.
利用邢台市生态环境局的大气污染物监测数据和同期气象观测资料,对邢台市2018年6月10—24日的一次臭氧污染过程进行了分析。结果表明:(1)污染过程中邢台市4个监测点臭氧质量浓度变化趋势基本一致,邢师高专臭氧质量浓度最高,市环保局最低;臭氧质量浓度日变化呈单峰型,05:00—06:00最低,15:00最高,邢师高专臭氧质量浓度昼夜差最大,市环保局昼夜差最小。(2)晴天、阴天、雨天臭氧质量浓度变化趋势大致相同,日变化也呈单峰型,晴天臭氧质量浓度日变化剧烈,雨天则变化平缓。(3)臭氧质量浓度与平均气温、最高气温、最低气温、太阳辐射、平均风速均呈显著的正相关关系,其中与最高气温相关系数最高;臭氧质量浓度与NO_2、PM_(10)、CO、PM_(2.5)污染物之间呈显著负相关关系。(4)经过较强太阳辐射照射后,当最高气温在29℃及以上,相对湿度在30%~60%之间,风向为偏南风时,臭氧质量浓度在12:00—19:00时段易超标。  相似文献   

14.
福建省夏季易发生臭氧污染,为了解福建省臭氧变化特征,利用中国环境监测总站全国城市空气质量实时发布平台的实时数据分析了福建省各地级市2015—2017年逐小时臭氧平均变化。研究结果表明,莆田市是福建省臭氧平均浓度最高的城市;福建省各城市2015—2017年逐日臭氧浓度均呈现增加趋势,且存在明显的月变化动态。福建省各地区周末臭氧浓度低于工作日臭氧浓度。该研究结果可为不同地区臭氧管控提供参考。  相似文献   

15.
利用南疆最大的城市库尔勒市2011年11月15日-2012年11月30日连续自动可吸入颗粒物(PM10)浓度观测数据,分析了PM10的污染状况和质量浓度变化特征。结果表明:(1)由于气象条件与人类活动的影响,PM10浓度日变化为明显的双峰型。(2)PM。。质量浓度存在明显的周内变化,周一出现最大值274.8μg·m^-3,周三出现最小值196.7μg·m^-3。(3)PM10最高月浓度出现在4月,浓度为562.1μg·m^-3;7月达到最低浓度107.4μg·m^-3;11月达到次大值219.9μg·m^-3。(4)春季PM,。浓度较高,夏季较低,总体特征为:春季〉秋季〉冬季〉夏季,四季的平均浓度均超过国家二级标准。(5)降雪过程对PM10具有明显的清除作用,沙尘天气有使PM10质量浓度迅速增加的作用。  相似文献   

16.
拉萨地区夏季地面臭氧的观测和特征分析   总被引:5,自引:0,他引:5  
1998年 6~ 9月 ,在西藏拉萨郊区 (海拔 36 5 0m ,2 9.6 5°N ,91.16°E)对地面臭氧进行了连续观测。该地区夏季地面臭氧日平均浓度在 10~ 6 0nL/L ,夏初的浓度较高于夏季后期。地面臭氧浓度的日变化呈单峰型 ,峰值出现在当地时间 10~ 18时 ,具有光化学过程臭氧生成的典型变化特征。局地风速、降水、太阳总辐射等气象因素的变化对地面臭氧浓度具有不同程度的影响。拉萨地区大规模宗教活动中的露天生物体燃烧 ,对地面臭氧浓度的增加有十分明显的贡献  相似文献   

17.
利用有机碳/元素碳分析仪(DRI 2001A型)和黑碳积分光谱仪(ISSW)测定了2015年兰州市夏季大气中有机碳(OC)、元素碳(EC)以及黑碳(BC)的含量,并对夏季日夜有机碳、元素碳和黑碳质量浓度变化特征进行了深入的分析。研究结果表明:黑碳和元素碳质量浓度测量结果受滤膜采样效率和测量仪器影响,差异较大,黑碳气溶胶夜间的含量高于白天且变化幅度大,呈现明显的波动上升趋势。有机碳平均质量浓度白天为(3.90±1.23)μg·m~(-3),高于夜间,其值为(3.35±1.24)μg·m~(-3);元素碳平均质量浓度白天为(1.07±0.46)μg·m~(-3),低于夜间,其值为(1.59±0.68)μg·m~(-3)。兰州市夏季尤其是白天二次有机碳(SOC)含量较高,二次源为白天有机碳主要来源,一次源为夜间有机碳主要来源。将元素碳分为低温燃烧时生成的焦碳char(char=EC1-OPC)和高温燃烧时生成的烟炱soot(soot=EC2+EC3),通过分析char和soot日夜变化趋势,发现夏季日夜主要污染源均是机动车尾气,但夜间生物质燃烧和煤炭燃烧污染较白天有所增加,且明显呈现上升趋势。  相似文献   

18.
为探讨“人类活动—大气污染—气温变化”的关系反应链,从宏观尺度阐明PM_(2.5)浓度变化对气温的影响,利用1951—2017年中国822个气象站点日最高气温、日最低气温和日平均气温资料,1998—2016年中国年均PM_(2.5)浓度遥感图像数据、地表太阳辐射数据,1998—2016年中国各省(区)逐年能源消耗总量、地区生产总值及夜间灯光指数数据,运用Slope趋势变化分析方法与相关性分析法,分析了中国PM_(2.5)浓度的变化趋势及其影响因素。结果表明:1998—2016年中国黄淮海区、东北区PM_(2.5)浓度上升速度最快,分别为1.42μg·m^(-3)·a^(-1)、1.44μg·m^(-3)·a^(-1),而其他地区相对变化不明显;黄淮海区PM_(2.5)浓度平均值高,地表太阳辐射降低,对该区年最高气温有明显的抑制作用,但对年平均气温和年最低气温的影响不明显。东北区PM_(2.5)浓度增长速率较高,但年平均浓度值低,该地区有着较高的水热配合度,PM_(2.5)对年最高气温的抑制作用不明显;能源消耗总量与PM_(2.5)浓度呈显著的正相关。  相似文献   

19.
基于京津冀地区80个环境监测站PM_(2.5)浓度逐时监测资料和气象观测资料,以2016年12月16—21日和2017年1月1—7日雾和霾天气为例,分析PM_(2.5)浓度演变的气象条件。结果表明:气象条件在北京地区污染物浓度爆发性增长过程中具有重要作用。北京地区12月19—20日PM_(2.5)浓度出现爆发性增长,小时浓度在8 h内上升201μg·m~(-3),主要是边界层南风分量由地面增厚至700 m,700 m以上弱下沉抑制作用,结合地面辐合线维持所致;20—21日北京地区PM_(2.5)浓度维持高值且无日变化,是由于低空1.5 km出现弱回暖,逆温层显著增厚增强且无明显日变化,导致高浓度气溶胶无法有效扩散。综合来看,2016年12月16—21日污染物浓度爆发性增长的原因以外源性污染物输送为主;2017年1月3—4日污染物浓度爆发性增长原因与局地极端不利扩散条件及污染排放等其他因素有关。  相似文献   

20.
利用北京地区2006—2015年春节及其前后三周的城区、郊区站数据分析了早晚高峰期出行活动对城市热岛效应、NO_x浓度、PM_(2.5)浓度的影响。结果表明人口、交通、社会活动的密集程度的确会对城市热岛效应和大气污染物浓度造成一定的影响:(1)第-3、-2、+2、+3周(以下称"BG时段")与春节周(以下称"CNY时段")间的城市热岛效应差异在早高峰期间平均为0.30℃,在晚高峰期间平均为0.43℃,在其他时段平均为0.26℃,晚高峰对城市热岛效应的影响更明显;(2)BG时段与CNY时段城、郊NO_x浓度差的最大差异出现在08时,为54.95μg/L。在早高峰期间为48.55μg/L,晚高峰期间为23.44μg/L。城市晚高峰出行活动对NO_x浓度城、郊差异的贡献量随着夜间的不利扩散条件而延迟出现峰值,城市早高峰出行对NO_x浓度城、郊差异的增大作用更为突出;(3)城郊PM_(2.5)浓度BG时段高于CNY时段的时间出现在05—19时,早高峰期间平均差值为12.82μg/m~3,晚高峰期间平均差值为8.22μg/m~3。考虑到汽车尾气中的超细粒子和污染气体需要在空气中进行化学反应或者吸湿增长才能变成PM_(2.5),因此PM_(2.5)浓度的变化情况并不完全对应于早晚高峰出行的时间,而是有所延迟。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号