首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 171 毫秒
1.
一次暴雨天气过程的物理量分析   总被引:27,自引:2,他引:27  
郑仙照  寿绍文  沈新勇 《气象》2006,32(1):102-106
对2002年发生在闽东的一次暴雨天气过程进行分析。结果表明:螺旋度和对流有效位能对暴雨的预报有指示意义,暴雨产生在低层正螺旋度中心与高层负螺旋度中心相配合和中低层有不稳定能量储存的高能区。在暴雨强盛期,螺旋度呈中低层正值,高层负值的上下配置,最大值位于700hPa。对流有效位能大值区与暴雨中心相对应,对流有效位能的时空变化能较好地反映暴雨的时空演变特征。利用中尺度数值模式输出的结果对不稳定能量场进行分析表明,位势不稳定能量的释放是暴雨产生发展的可能机制之一。  相似文献   

2.
利用常规高空和地面观测资料、西安探空资料、陕西省闪电定位监测等资料,对2010年8月陕西关中东部的两次强对流天气过程影响系统及其热力不稳定条件进行对比分析。结果表明:两次强对流天气具有相似的环流背景,都是副热带高压西伸北抬,河套西部有西风槽东移,为副高边缘的对流天气。不同的是影响系统不同,8月12日过程西风槽的垂直结构为前倾槽结构,且地面存在明显的中尺度辐合线,使8月12日过程的对流天气强于8月18日过程。两次强对流天气过程都具备较好的热力不稳定条件,主要表现为:强的垂直温度梯度和上干冷下暖湿的垂直热力结构特征,8月12日过程高空冷空气更强T-logp图上的“喇叭口”型探空曲线、不稳定能量区、风的垂直切变等对流性特征反映明显;两次过程各对流参数在强对流发生前后演变趋势基本一致,对流有效位能(CAPE)剧增、对流抑制能量(CIN)剧减明显。K大于39℃、△θ_se(500-850)小于-20℃,对流有效位能值大于1600J/kg,对对流天气的预测、强度判别具有较好的指示意义。  相似文献   

3.
刘晶  周雅蔓  杨莲梅  曾勇  刘雯 《大气科学》2019,43(6):1204-1218
2016年7月31日至8月1日新疆伊犁河谷发生了一次极端强降水事件,多站突破降水极值。利用NCEP/NCAR 0.25°×0.25°再分析资料、中国地面卫星雷达三源融合逐小时降水产品及国家基本地面观测站逐时降水资料,通过天气研究和预报(WRF)数值模拟和诊断分析强降水期间大气的不稳定性及其触发机制,证实了不同尺度系统相互作用以及复杂地形的影响是干旱、半干旱地区极端暴雨形成的重要因子,并得出以下结论:(1)降水前河谷低层高对流有效位能积累,低层锋面东移触发对流有效位能释放,造成河谷第一阶段短时强降水天气;前期对流性降水释放湿对流不稳定能量,低层大气对称不稳定性逐渐增强,在对称不稳定作用下维持和加强了伊犁河谷第二阶段强降水天气。(2)第一强降水阶段期间大气低层为对流不稳定性层结,降水初期和第二阶段强降水期间大气均为条件对称不稳定性层结,对称不稳定的产生主要来自于湿位涡斜压分量(Mpv2),其中降水初期低层Mpv2变化由大气的湿斜压性和低层水平风的垂直切变所造成,第二阶段强降水低层Mpv2变化主要由大气湿斜压性造成。(3)第一阶段强降水期间,低层锋面和地形抬升,垂直运动迅速发展,造成河谷南、北部山前降水;河谷东侧中尺度气旋在地形阻挡下稳定少动,是东部地区短时强降水天气发生的直接启动机制。第二阶段强降水期间,中、低层锋区叠加爬坡,冷锋锋生,中、低层风场辐合区叠加,河谷东北部形成垂直环流圈,上升运动进一步发展,是造成河谷第二阶段暴雨的重要原因。  相似文献   

4.
一次冷涡背景下强对流不稳定条件的成因分析   总被引:1,自引:0,他引:1  
李云静  张建春  王捷纯  方纯纯 《气象》2013,39(2):210-217
利用常规观测资料及NCEP再分析资料,在分析环流背景、探空资料的基础上,通过选取不同的高度和温度,对比研究四种CAPE以及CAPE场与地面要素场的关系,对发生在辽宁沈阳的一次冷涡背景下的强对流天气进行不稳定条件成因分析.结果表明,水汽潜热是不稳定能量的主要组成部分,冷涡背景下低层暖湿平流、高层冷干平流有利于不稳定能量的累积,从而导致强对流天气的发生;对流温度CAPE可以反映午后发生强对流所必需的不稳定能量,对强对流天气预报具有一定指示意义.  相似文献   

5.
关于业务上应用条件对称不稳定相关问题的讨论   总被引:1,自引:0,他引:1  
章丽娜  周小刚  夏扬 《气象学报》2018,76(5):824-832
条件对称不稳定(CSI)理论常常被用来作为倾斜对流的发展机制之一,在业务上常用来解释与锋面相联系的一条或多条中尺度雨带、雷达图像上观测到的带状雨带的成因等。条件对称不稳定的诊断包括CSI斜率判据、斜升对流有效位能(SCAPE)、湿对称不稳定(MSI)、相当位涡(EPV)等判据。业务预报人员存疑较多的问题是这些方法是否具有一致性并在业务上如何使用。针对上述问题,首先通过与业务预报人员较熟悉的条件不稳定类型作类比,来说明条件对称不稳定两种判据与条件不稳定两种判据的相似性。但在业务使用上,判别条件对称不稳定时多使用CSI斜率判据,即等动量面的坡度大于等位温面坡度而小于等湿球位温面坡度。由于条件对称不稳定通常出现在大气处于几乎饱和的情况下,此时的CSI斜率判据则演变为湿对称不稳定判据,即等动量面坡度小于等湿球位温面坡度。为判别相当位涡与湿对称不稳定判据是否具有一致性,文中的推导和实例分析均表明,二维相当位涡实际上是湿对称不稳定判据的另一种表现形式,但是湿对称不稳定判据需主观去比较等相当位温面与等动量面斜率大小,而二维相当位涡则可通过其是否小于0进行客观判断。需注意的是,在与推导条件对称不稳定斜率判据相同的二维坐标下,相当位涡与湿对称不稳定判据才具有一致性,将相当位涡扩展到常规坐标下使用三维相当位涡作为湿对称不稳定判据是不可取的。   相似文献   

6.
通过对2004年6月18日,济南局地大暴雨过程的单站能量廓线,以及850hPa湿静力能量场的分析,结果表明:6.18大暴雨是在有利的环境场下,由强对流运动所引发的.而强对流运动的发生、发展,主要是因为单站前期积累下来的大量位势不稳定能量的集中释放所促成的.其中,潜在不稳定能量的积累和释放在这次强对流运动中有着突出贡献.暴雨落区上空对应着明显的能量锋区,随着能量锋区的消失,暴雨天气过程结束.说明高空能量锋区是本次过程产生局地大暴雨的一个重要条件.  相似文献   

7.
利用"淮河流域东北部一次异常特大暴雨的数值模拟研究Ⅰ"的数值模拟结果,分析了几种不稳定对流涡度矢量(CVV)与中尺度深湿对流系统之间的关系,并分析了不稳定条件的增强和维持机制,结果表明:(1)中低层对流不稳定是深湿对流系统发生的先决条件,由于低层存在辐合,使得周围湿空气向暴雨区集中,对流单体在暴雨区汇聚,且发生合并增强,台风左前方向暴雨区输送对流不稳定能量等,是使得暴雨区对流不稳定重新建立和加强的重要机制.(2)深湿对流系统的中低层不仅有对流不稳定,而且还有斜压不稳定、条件对称不稳定,而中高层必须有湿斜压不稳定和条件对称不稳定.深湿对流系统中高层西(北)侧为负MPV2柱,东(南)侧为正MPV2柱;(3)深湿对流系统中惯性不稳定柱与惯性稳定柱相间分布,西(南)侧为负CVV柱,东(北)侧为正CVV柱,负CVV柱对深湿对流起激发作用;(4)惯性不稳定、湿倾斜不稳定和条件不稳定产生强的倾斜式对流,而强的倾斜式上升运动加强了深对流系统北侧高层的南风分量,因深对流系统南侧低层出现补偿性下沉气流,因而低层南风加强,高低空急流中心的加强会进一步加强对流的发展,使得惯性不稳定、湿倾斜不稳定及条件不稳定增强和维持,这是一个正反馈过程.(5)在暴雨中心以东维持一顺切变环流,同时暴雨中心的浅对流单体吸收来自南方的水汽和不稳定能量,中尺度辐合线与β中尺度涡旋对对流单体起组织和增强作用,对流系统中辐合、辐散柱相间分布,强散度柱与强涡柱互伴互耦,都有利于形成中尺度深湿对流系统,使不稳定向纵深方向发展,从而使得不稳定得到增强和维持.  相似文献   

8.
东北冷涡不稳定能量分布特征及其与降水落区的关系   总被引:7,自引:2,他引:5  
应用地面自动站1 h雨量资料和NCEP再分析资料,以一次典型的东北冷涡过程(2005年7月8~14日)为例,根据冷涡环流特征,将冷涡过程划分为发展期、成熟期、减弱期3个阶段。发现冷涡发展阶段降水主要由其南部西风锋区湿斜压不稳定产生,属于大范围混合型降水;而其他阶段降水主要由对流不稳定产生,以局地对流性降水为主。冷涡的不同发展阶段均可对应不稳定能量区,但其分布有较大差异,对流层低层的暖湿输送及辐合是不稳定能量积累的关键。发展阶段不稳定能量区分布于离冷涡中心较远的东南部;成熟期位于接近冷涡中心东南部;减弱期位于冷涡减弱形成的低压槽中。不同发展阶段不稳定能量与对流降水有不同的对应关系,冷涡发展期对流有效位能与较大的水汽通量是影响降水落区的主要因素;成熟期对流降水基本发生在对流有效位能区和925 hPa湿区的重叠区域;减弱期对流降水不但与对流有效位能、低层相对湿度有关,而且还取决于对流层低层辐合线。  相似文献   

9.
对流能量计算及强对流天气落区预报技术研究   总被引:24,自引:3,他引:24       下载免费PDF全文
文章分析了两种典型的大气湿绝热过程及其处理方法,对大气对流能量参数的计算技术进行了研究。结合实际个例,利用可逆饱和绝热过程,对包含液态水重力拖曳作用的修正对流有效位能(MCAPE)和修正下沉对流有效位能(MDCAPE)进行了定量计算。文章结合数值模式输出探空分析,预报不稳定和对流能量的区域分布,在此基础上建立了综合多指标叠套强对流天气落区预报方法,用MM5 及国家气象中心T106模式输出及诊断产品预报强对流天气落区,并检验强对流落区预报技术。  相似文献   

10.
对流对称不稳定的发展演变和环流特征   总被引:13,自引:0,他引:13  
利用1999年6月一次典型梅雨锋暴雨过程和敏感性试验的数值模拟结果分析了对流对称不稳定的发展演变和环流特征.结果表明:条件对称不稳定是大气稳定状态和条件不稳定状态之间的中间纽带,大气由稳定向不稳定或者由不稳定向稳定的演变均通过条件对称不稳定来实现;对流对称不稳定环流的形成与不稳定层的配置有关,当低层为条件不稳定而高层叠加深厚的条件对称不稳定时,对流对称不稳定环流低层出现垂直上升气流,高层出现范围较广的倾斜上升气流,对称不稳定能量释放产生中尺度云带.当低层和高层出现条件不稳定,中间呈条件对称不稳定或弱稳定度层结时,从低层到高层出现较深厚的垂直上升气流,湿重力不稳定能量的释放导致了云带的形成.  相似文献   

11.
Tongwen Wu 《Climate Dynamics》2012,38(3-4):725-744
A simple mass-flux cumulus parameterization scheme suitable for large-scale atmospheric models is presented. The scheme is based on a bulk-cloud approach and has the following properties: (1) Deep convection is launched at the level of maximum moist static energy above the top of the boundary layer. It is triggered if there is positive convective available potential energy (CAPE) and relative humidity of the air at the lifting level of convection cloud is greater than 75%; (2) Convective updrafts for mass, dry static energy, moisture, cloud liquid water and momentum are parameterized by a one-dimensional entrainment/detrainment bulk-cloud model. The lateral entrainment of the environmental air into the unstable ascending parcel before it rises to the lifting condensation level is considered. The entrainment/detrainment amount for the updraft cloud parcel is separately determined according to the increase/decrease of updraft parcel mass with altitude, and the mass change for the adiabatic ascent cloud parcel with altitude is derived from a total energy conservation equation of the whole adiabatic system in which involves the updraft cloud parcel and the environment; (3) The convective downdraft is assumed saturated and originated from the level of minimum environmental saturated equivalent potential temperature within the updraft cloud; (4) The mass flux at the base of convective cloud is determined by a closure scheme suggested by Zhang (J Geophys Res 107(D14), doi:10.1029/2001JD001005, 2002) in which the increase/decrease of CAPE due to changes of the thermodynamic states in the free troposphere resulting from convection approximately balances the decrease/increase resulting from large-scale processes. Evaluation of the proposed convection scheme is performed by using a single column model (SCM) forced by the Atmospheric Radiation Measurement Program’s (ARM) summer 1995 and 1997 Intensive Observing Period (IOP) observations, and field observations from the Global Atmospheric Research Program’s Atlantic Tropical Experiment (GATE) and the Tropical Ocean and Global Atmosphere Coupled Ocean–Atmosphere Response Experiment (TOGA COARE). The SCM can generally capture the convective events and produce a realistic timing of most events of intense precipitation although there are some biases in the strength of simulated precipitation.  相似文献   

12.
Several methods dealing with the moist adiabatic process are described in this paper. They are basedon static energy conservation, pseudoequivalent potential temperature conservation, the strict pseudoadiabatic equation, and the reversible moist adiabatic process, respectively. Convective energy parameters, which are closely related to the moist adiabatic process and which reflect the gravitational effects ofcondensed liquid water, are reintroduced or defined, including MCAPE [Modified-CAPE (convective available potential energy)], DCAPE (Downdraft-CAPE), and MDCAPE (Modified-Downdraft-CAPE). Two real case analyses with special attention given to condensed liquid water show that the selection of moist adiabatic process does affect the calculated results of CAPE and the gravitational effects of condensed liquid water are not negligible in severe storms. Intercomparisons of these methods show that static energy conservation is consistent with pseudo-equivalent potential temperature conservation not only in physical properties but also in calculated results, and both are good approximations to the strict pseudo-adiabatic equation. The lapse rate linked with the reversible moist adiabatic process is relatively smaller than that linked with other moist adiabatic processes, especially when considering solidification of liquid water in the reversible adiabatic process.  相似文献   

13.
对流有效位能计算的新方案   总被引:2,自引:1,他引:1  
对流有效位能是强对流天气分析预报的重要参数。本文通过理论推导,提出了载水气块和非载水气块两种情况下,对流有效位能的两个新的计算方案,分别记作CAPEw和CAPE。该方案与以往的方案有很大的不同和根本的区别,更加合理和符合实际。编制了相应的计算程序,可以计算两种情况下的对流抑制能量CINw、CIN,对流有效位能CAPEw、CAPE,抬升凝结高度LCL(二者相同),自由对流高度LFCw、LFC,对流凝结高度CCL(二者相同)以及平衡高度ELw、EL;可以预报对流温度Tg(二者相同);可以分析地面和高空温度、湿度、等压面高度发生变化时,CINw、CIN和CAPEw、CAPE等的数值变化情况,便于业务应用和理论研究。还讨论了影响对流有效位能局地变化的因子和预报思路。  相似文献   

14.
Although the parcel method and the convective available potential energy (CAPE) are widely used to predict the strength and height of convection, they ignore the pressure perturbation and fail to explain strong updrafts observed in tropical cyclones and hurricanes without CAPE, or deep, strong warm downdrafts in hurricane eye-walls, tropopause folds, or downslope winds leeward of mountains. Those phenomena can be explained by the Bernoulli equation that conserves the sum of kinetic energy, potential energy and enthalpy in an inviscid fluid. Our analytic and numerical results also show how, in a moist stable environment without CAPE, updrafts and clouds can develop against negative buoyancy. Deep warm downdrafts can also form in cloud-free regions or areas without significant evaporative cooling from precipitation.  相似文献   

15.
Gross moist stability, an effective static stability, in the tropics is examined in observations and model simulations. Under convective quasi-equilibrium closure, gross moist stability, a vertical integration of the vertical moist static energy gradient weighted by pressure velocity, is derived based on an approximately moist adiabatic process associated with deep convection. In climatology, gross moist stability is generally similar to the spatial distribution of mean precipitation. In global warming simulations, gross moist stability tends to increase in the tropics. It implies a more stable atmosphere, which is consistent with the weakening of tropical circulation found in climate models. Main effects, which induce the changes in gross moist stability, include the low-level moisture effect, the maximum level of convection (MLC) effect, i.e., the depth of deep convection, and the dry static energy effect associated with stratification of temperature, with the first two also found in climatology. Because of the strong cancellation between the effects of low-level moisture and dry static energy due to the moist adiabatic process of deep convection, the effect of MLC, which has been overlooked in measuring atmospheric stability, is crucial in determining the sign of changes in gross moist stability. Gross moist stability is a better index to represent changes in atmospheric stability in the tropics under global warming, compared to both dry and moist static stability.  相似文献   

16.
2003年8月“巴蜀夜雨”过程的模拟和分析研究   总被引:6,自引:0,他引:6  
卢萍  宇如聪  周天军 《气象学报》2008,66(3):371-380
结合中尺度数值预报模式AREM的数值试验和观测资料分析,对2003年8月川西地区的9次夜雨过程进行了模拟研究和综合分析.结果表明,在一定环流背景下,川西地区特殊地形引起的沿坡地的辐合上升运动和下垫面提供给低层大气的热通量所导致的大气层结不稳定,对川西夜雨的形成和发展有重要影响.白天,随着陆-气通量交换的增加,低层大气的温度和湿度逐步升高,并在午后达到极值.与此同时,低层偏南暖湿气流在盆地西部由于气旋性弯曲而形成的东北风在午后逐渐加强,这支气流在盆地西部被地形阻挡,产生爬升运动.辐合上升将低层高温高湿的大气向上输送,使得大气不稳定层结的厚度以及强度都增加;日落以后,低层大气的相对湿度随着气温的降低而增大,容易饱和而形成凝结,同时大气中积累了相当可观的对流有效位能,低层辐合抬升等因素容易触发不稳定能量释放,造成对流性夜雨天气.强烈的对流辐合运动需要周围大气的入流补偿,促使偏东风气流增强且向高空伸展,这令辐合抬升作用进一步增强.  相似文献   

17.
为了提高沙瓦特指数的计算精度, 在沙瓦特指数计算方案中引入二分法:先用于计算抬升凝结高度上的要素, 进而计算假相当位温, 再依据假相当位温守恒性质用于计算500 hPa气块温度。与其他方案对比表明, 该迭代算法计算的沙瓦特指数精度较高; 与查表法所得的气块温度对比表明, 该迭代算法得到的气块温度的最大绝对误差为1.36 ℃, 平均误差 (-0.68 ℃) 与平均绝对误差 (0.69 ℃) 数值接近; 迭代算法与查表法之间以系统性偏差为主; 此外, 该迭代算法计算量小, 收敛速度快, 具有推广应用价值。  相似文献   

18.
复杂地形下雷暴增强过程的个例研究   总被引:12,自引:2,他引:10  
陈双  王迎春  张文龙  陈明轩 《气象》2011,37(7):802-813
本文基于多普勒雷达变分同化分析系统(VDRAS)反演的对流层低层热力和动力场,并结合多种稠密观测资料,对北京地区2009年7月22日一次弱天气尺度强迫下雷暴在山区和平原增强的机理进行了较深入的分析。研究结果表明:雷暴过程受大尺度天气系统影响不明显,对流前期地面弱冷锋,是此次雷暴新生的触发机制,高层冷平流、低层偏南暖湿气流的稳定维持和对流不稳定能量的聚集是本次雷暴增强的必要条件。雷暴从河北北部移进北京西北山区后,在下山和到达平原地区时,经历了两次明显的发展增强阶段。雷暴第一阶段下山增强,地形强迫起着主要作用,具体表现在三个方面:(1)地形斜坡使得雷暴冷池出流下山加速与稳定维持的偏南气流形成了强的辐合区;(2)地形抬升使得偏南暖湿入流强烈地上升,从而加剧了对流的发展;(3)地形抬高了冷池出流高度,使得出流与近地面偏南气流构成随高度顺转的低层垂直风切变,低层暖空气之上有冷平流叠加,使得雷暴前方的动力和热力不稳定增强。雷暴第二阶段在平原地区再次增强的主要原因是:组织完好的雷暴到达平原地区后,其冷池与低层暖舌在城区(朝阳地区)的对峙,产生了强的扰动温度梯度;强的冷池出流与势力相当的偏南暖湿气流相互作用产生了强的辐合上升气流,并与下沉气流在较长时间内共存;冷池出流形成的负涡度与低层切变产生的正涡度达到近似平衡状态。运用RKW理论,三者导致雷暴前方低层的辐合抬升最强,最有利于雷暴的维持发展。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号