首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 29 毫秒
1.
2018年1月,利用颗粒物采样器采集武汉市大气PM2.5样品并进行水溶性无机离子(F-、Cl-、NO3-、SO42-、Na+、NH4+、K+、Mg2+、Ca2+)的分析.结果表明,NO3-、SO42-、NH4+是PM2.5中最主要的3种水溶性无机离子,除Mg2+与Ca2+外,PM2.5与WSⅡs (水溶性无机离子)之间的相关性显著,且移动源贡献占主导地位.阴阳离子平衡表明武汉市冬季灰霾期PM2.5呈中性或弱酸性.通过混合单粒子拉格朗日综合轨迹模式模拟并采用分层聚类得出了4种主要的后向气流轨迹及相应的PM2.5和水溶性离子浓度,结果表明区域传输对此次灰霾期影响较大.  相似文献   

2.
This study elucidates the characteristics of ambient PM2.5 (fine) and PM1 (submicron) samples collected between July 2009 and June 2010 in Raipur, India, in terms of water soluble ions, i.e. Na+, NH 4 + , K+, Mg2+, Ca2+, Cl?, NO 3 ? and SO 4 2? . The total number of PM2.5 and PM1 samples collected with eight stage cascade impactor was 120. Annual mean concentrations of PM2.5 and PM1 were 150.9?±?78.6 μg/m3 and 72.5?±?39.0 μg/m3, respectively. The higher particulate matter (PM) mass concentrations during the winter season are essentially due to the increase of biomass burning and temperature inversion. Out of above 8 ions, the most abundant ions were SO 4 2? , NO 3 ? and NH 4 + for both PM2.5 and PM1 aerosols; their average concentrations were 7.86?±?5.86 μg/m3, 3.12?±?2.63 μg/m3 and 1.94?±?1.28 μg/m3 for PM2.5, and 5.61?±?3.79 μg/m3, 1.81?±?1.21 μg/m3 and 1.26?±?0.88 μg/m3 for PM1, respectively. The major secondary species SO 4 2? , NO 3 ? and NH 4 + accounted for 5.81%, 1.88% and 1.40% of the total mass of PM2.5 and 11.10%, 2.68%, and 2.48% of the total mass of PM1, respectively. The source identification was conducted for the ionic species in PM2.5 and PM1 aerosols. The results are discussed by the way of correlations and principal component analysis. Spearman correlation indicated that Cl? and K+ in PM2.5 and PM1 can be originated from similar type of sources. Principal component analysis reveals that there are two major sources (anthropogenic and natural such as soil derived particles) for PM2.5 and PM1 fractions.  相似文献   

3.
Beijing is one of the largest and most densely populated cities in China. PM2.5 (fine particulates with aerodynamic diameters less than 2.5 μm) pollution has been a serious problem in Beijing in recent years. To study the temporal and spatial variations in the chemical components of PM2.5 and to discuss the formation mechanisms of secondary particles, SO2, NO2, PM2.5, and chemical components of PM2.5 were measured at four sites in Beijing, Dingling (DL), Chegongzhuang (CG), Fangshan (FS), and Yufa (YF), over four seasons from 2012 to 2013. Fifteen chemical components, including organic carbon (OC), elemental carbon (EC), K+, NH4 +, NO3 ?, SO4 2?, Cl?, Al, Ca, Fe, Mg, Na, Pb, Si, and Zn, were selected for analysis. Overall, OC, SO4 2?, NO3 ?, and NH4 + were dominant among 15 components, the annual average concentrations of which were 22.62 ± 21.86, 19.39 ± 21.06, 18.89 ± 19.82, and 13.20 ± 12.80 μg·m?3, respectively. Compared with previous studies, the concentrations of NH4 + were significantly higher in this study. In winter, the average concentrations of OC and EC were, respectively, 3 and 2.5 times higher than in summer, a result of coal combustion during winter. The average OC/EC ratios over the four sites were 4.9, 7.0, 8.1, and 8.4 in spring, summer, autumn, and winter, respectively. The annual average [NO3 ?]/[SO4 2?] ratios in DL, CG, FS, and YF were 1.01, 1.25, 1.08, and 1.12, respectively, which were significantly higher than previous studies in Beijing, indicating that the contribution ratio of mobile source increased in recent years in Beijing. Analysis of correlations between temperature and relative humidity and between SOR ([SO4 2?]/([SO4 2?] + [SO2])) and NOR ([NO3 ?]/([NO3 ?] + [NO2])) indicated that gas-phase oxidation reactions were the major formation mechanism of SO4 2? in spring and summer in urban Beijing, whereas slow gas-phase oxidation reactions and heterogeneous reactions both occurred in autumn and winter. NO3 ? was mainly formed through year-round heterogeneous reactions in urban Beijing.  相似文献   

4.
An hourly quantification of inorganic water-soluble PM10 ions and corresponding trace gases was performed using the Monitor for AeRosols and Gases in ambient Air (MARGA) at the TROPOS research site in Melpitz, Germany. The data availability amounts to over 80% for the five-year measurement period from 2010 to 2014. Comparisons were performed for the evaluation of the MARGA, resulting in coefficients of determinations (slopes) of 0.91 (0.90) for the measurements against the SO2 gas monitor, 0.84 (0.88), 0.79 (1.39), 0.85 (1.20) for the ACSM NO3 ?, SO4 2? and NH4 + measurements, respectively, and 0.85 (0.65), 0.88 (0.68), 0.91 (0.83), 0.86 (0.82) for the filter measurements of Cl?, NO3 ?, SO4 2? and NH4 +, respectively. A HONO comparison with a batch denuder shows large scatter (R2 = 0.41). The MARGA HNO3 is underestimated compared to a batch and coated denuder with shorter inlets (slopes of 0.16 and 0.08, respectively). Less NH3 was observed in coated denuders for high ambient concentrations. Long-time measurements show clear daily and seasonal variabilities. Potential Source Contribution Function (PSCF) analysis indicates the emission area of particulate ions Cl?, NO3 ?, SO4 2?, NH4 +, K+ and gaseous SO2 to lie in eastern European countries, predominantly in wintertime. Coarse mode sea salt particles are transported from the North Sea to Melpitz. The particles at Melpitz are nearly neutralised with a mean molar ratio of 0.90 for the five-year study. A slight increase of the neutralization ratio over the last three years indicates a stronger decrease of the anthropogenically emitted NO3 ? and SO4 2? compared to NH4 +.  相似文献   

5.

Size-segregated aerosol particles were collected using a high volume MOUDI sampler at a coastal urban site in Xiamen Bay, China, from March 2018 to June 2020 to examine the seasonal characteristics of aerosol and water-soluble inorganic ions (WSIIs) and the dry deposition of nitrogen species. During the study period, the annual average concentrations of PM1, PM2.5, PM10, and TSP were 14.8?±?5.6, 21.1?±?9.0, 35.4?±?14.2 μg m?3, and 45.2?±?21.3 μg m?3, respectively. The seasonal variations of aerosol concentrations were impacted by the monsoon with the lowest value in summer and the higher values in other seasons. For WSIIs, the annual average concentrations were 6.3?±?3.3, 2.1?±?1.2, 3.3?±?1.5, and 1.6?±?0.8 μg m?3 in PM1, PM1-2.5, PM2.5–10, and PM>10, respectively. In addition, pronounced seasonal variations of WSIIs in PM1 and PM1-2.5 were observed, with the highest concentration in spring-winter and the lowest in summer. The size distribution showed that SO42?, NH4+ and K+ were consistently present in the submicron particles while Ca2+, Mg2+, Na+ and Cl? mainly accumulated in the size range of 2.5–10 μm, reflecting their different dominant sources. In spring, fall and winter, a bimodal distribution of NO3? was observed with one peak at 2.5–10 μm and another peak at 0.44–1 μm. In summer, however, the fine mode peak disappeared, likely due to the unfavorable conditions for the formation of NH4NO3. For NH4+ and SO42?, their dominant peak at 0.25–0.44 μm in summer and fall shifted to 0.44–1 μm in spring and winter. Although the concentration of NO3–N was lower than NH4–N, the dry deposition flux of NO3–N (35.77?±?24.49 μmol N m?2 d?1) was much higher than that of NH4–N (10.95?±?11.89 μmol N m?2 d?1), mainly due to the larger deposition velocities of NO3–N. The contribution of sea-salt particles to the total particulate inorganic N deposition was estimated to be 23.9—52.8%. Dry deposition of particulate inorganic N accounted for 0.95% of other terrestrial N influxes. The annual total N deposition can create a new productivity of 3.55 mgC m?2 d?1, accounting for 1.3–4.7% of the primary productivity in Xiamen Bay. In light of these results, atmospheric N deposition could have a significant influence on biogeochemistry cycle of nutrients with respect to projected increase of anthropogenic emissions from mobile sources in coastal region.

  相似文献   

6.
During the MILAGRO campaign, March 2006, eight-stage cut impactors were used to sample atmospheric particles at Tecámac (T1 supersite), towards the northeast edge of the Mexico City Metropolitan Area, collecting fresh local emissions and aged pollutants produced in Mexico City. Particle samples were analyzed to determine total mass concentrations of Ca2+, Mg2+, NH4 +, K+, Cl?, SO4 2?, and NO3 ?. Average concentrations were 22.1 ± 7.2 μg m?3 for PM10 and 18.3 ± 6.2 μg m?3 for PM1.8. A good correlation between PM10 and PM1.8, without influence from wind patterns, indicates that local emissions are more important than the city’s pollution transported to the site, despite the fact that Tecámac is just 40 km away from Mexico City. A lack of diurnal patterns in the PM2.5/PM1.8 ratio supports this conclusion. The inorganic composition of particles suggests that vehicles, soil resuspension, and industries are the main pollutant sources. Finally, the particles were found to be neutralized, in agreement with observations in the Mexico City Metropolitan Area.  相似文献   

7.
Aerosols consist of organic and inorganic species, and the composition and concentration of these species depends on their sources, chemical transformation and sinks. In this study an assessment of major inorganic ions determined in three aerosol particle size ranges collected for 1 year at Welgegund in South Africa was conducted. SO42? and ammonium (NH4+) dominated the PM1 size fraction, while SO42? and nitrate (NO3) dominated the PM1–2.5 and PM2.5–10 size fractions. SO42? had the highest contribution in the two smaller size fractions, while NO3? had the highest contribution in the PM2.5–10 size fraction. SO42? and NO3? levels were attributed to the impacts of aged air masses passing over major anthropogenic source regions. Comparison of inorganic ion concentrations to levels thereof within a source region influencing Welgegund, indicated higher levels of most species within the source region. However, the comparative ratio of SO42? was significantly lower due to SO42? being formed distant from SO2 emissions and submicron SO42? having longer atmospheric residencies. The PM at Welgegund was determined to be acidic, mainly due to high concentrations of SO42?. PM1 and PM1–2.5 fractions revealed a seasonal pattern, with higher inorganic ion concentrations measured from May to September. Higher concentrations were attributed to decreased wet removal, more pronounced inversion layers trapping pollutants, and increases in household combustion and wild fires during winter. Back trajectory analysis also revealed higher concentrations of inorganic ionic species corresponding to air mass movements over anthropogenic source regions.  相似文献   

8.
For the first time, simultaneous study on physical and chemical characteristics of PM10, PM2.5, and rainwater chemistry was attempted over the Bay of Bengal in monsoon season of 2009. The aerosols and rainwater samples were collected onboard ship ‘SK-261, ORV Sagar Kanya’ during Oceanographic Observations in the Northern Bay of Bengal under the Continental Tropical Convergence Zone (CTCZ) program conducted during 16 July to 19 Aug 2009. Aerosol samples collected by PM10 and PM2.5 were analyzed for various water soluble (Na+, K+, Ca2+, Mg2+, NH 4 + , Cl?, SO 4 2? and NO 3 ? and acid soluble (Fe2+, Al3+, Zn2+, Mn3+ and Ni2+) ionic constituents. The pH of rainwater varied from 5.10 to 7.04. Chloride ions contributed most to the total ion concentration in aerosol and rainwater, followed by Na+. Significant contributions of SO 4 2? , NO 3 ? and NH 4 + found in PM2.5, PM10 and high concentrations of TSP and non sea-salt SO 4 2? over the mid-ocean is attributed to the long range transport of anthropogenic pollution from the Indian continent. The scavenging ratio was maximum for coarse particles such as Ca2+ and minimum for fine particles like NH 4 + .  相似文献   

9.
The new European Council Directive (PE-CONS 3696/07) frames the inhalable (PM10) and fine particles (PM2.5) on priority to chemically characterize these fractions in order to understand their possible relation with health effects. Considering this, PM2.5 was collected during four different seasons to evaluate the relative abundance of bulk elements (Cl, S, Si, Al, Br, Cu, Fe, Ti, Ca, K, Pb, Zn, Ni, Mn, Cr and V) and water soluble ions (F, Cl, NO2 , NO3 , SO4 2−, Na+, NH4 +, Ca2+ and Mg2+) over Menen, a Belgian city near the French border. The air quality over Menen is influenced by industrialized regions on both sides of the border. The most abundant ionic species were NO3 , SO4 2− and NH4 +, and they showed distinct seasonal variation. The elevated levels of NO3 during spring and summer were found to be related to the larger availability of the NOx precursor. The various elemental species analyzed were distinguished into crustal and anthropogenic source categories. The dominating elements were S and Cl in the PM2.5 particles. The anthropogenic fraction (e.g. Zn, Pb, and Cu) shows a more scattered abundance. Furthermore, the ions and elemental data were also processed using principal component analysis and cluster analysis to identify their sources and chemistry. These approach identifies anthropogenic (traffic and industrial) emissions as a major source for fine particles. The variations in the natural/anthropogenic fractions of PM2.5 were also found to be a function of meteorological conditions as well as of long-range transport of air masses from the industrialized regions of the continent. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

10.
This study describes the chemical composition of dry deposition collected at a highway traffic site in central Taiwan during daytime and nighttime periods by using a dry deposition plate (DDP) and water surface sampler (WSS). In addition, the characterization for mass and water-soluble species of total suspended particulate (TSP), both PM2.5 and PM10, was studied at the study site from August 22 to November 30, 2006. Dry deposition fluxes of ambient air particulates and inorganic species (Na+, NH4+, K+, Mg2+, Ca2+, Cl, NO3 and SO42−) were analyzed by Ion Chromatography (DIONEX-100).Results of the particulate dry deposition fluxes and mass concentrations are higher in the water surface sampler with respect to the dry deposition plate used in this study. Statistical results also showed the average dry deposition flux of the ionic species (Na+, NH4+, K+, Cl, NO3 and SO42−) obtained by the DDP and WSS displayed significant differences. Also, the average concentrations of Mg2+ and, Ca2+ were statistically the same at this study site.  相似文献   

11.
Aerosol (PM10) samples were collected and its precursor gases, i.e., NH3, NO, NO2, and SO2 measured over Bay of Bengal (BoB) during winter months of December 2008 to January 2009 to understand the relationship between particular matter (PM) and precursor gases. The observations were done under the winter phase of Integrated Campaign on Aerosols, gases and Radiation Budget (W_ICARB). The distribution of water-soluble inorganic ionic composition (WSIC) and its interaction with precursor gases over BoB are reported in present case. Average atmospheric concentration of NH3, NO, NO2, and SO2 were recorded as 4.78?±?1.68, 1.89?±?1.26, 0.31?±?0.14, and 0.80?±?0.30?μg?m?3, whereas WSIC component of PM10, i.e., NH4 +, SO4 2?, NO3 ?, and Cl? were recorded as 1.96?±?1.66, 8.68?±?3.75, 1.92?±?1.75, and 2.48?±?0.78?μg?m?3, respectively. In the present case, abundance of nss-SO4 2? in the particulate matter is recorded as 18?%. It suggests the possibility of long-range transport as well as marine biogenic origin. Higher SO4 2?/(SO2?+?SO4 2?) equivalent molar ratio during the campaign indicates the gas-to-particle conversion with great efficiency over the study region.  相似文献   

12.
Long-term measurements of ambient particulate matter less than 2.5 μm in diameter (PM2.5) and its chemical compositions were performed at a rural site in Korea from December 2005 to August 2009. The average PM2.5 concentration was 31 μg m−3 for the whole sampling period, and showed a slightly downward annual trend. The major components of PM2.5 were organic carbon, SO42−, NO3, and NH4+, which accounted for 55 % of total PM2.5 mass on average. For the top 10 % of PM2.5 samples, anionic constituents and trace elements clearly increased while carbonaceous constituents and NH4+ remained relatively constant. Both Asian dust and fog events clearly increased PM2.5 concentrations, but affected its chemical composition differently. While trace elements significantly increased during Asian dust events, NO3, NH4+ and Cl were dramatically enhanced during fog events due to the formation of saturated or supersaturated salt solution. The back-trajectory based model, PSCF (Potential Source Contribution Function) identified the major industrial areas in Eastern China as the possible source areas for the high PM2.5 concentrations at the sampling site. Using factor analysis, soil, combustion processes, non-metal manufacture, and secondary PM2.5 sources accounted for 77 % of the total explained variance.  相似文献   

13.
Daily rainwater samples collected at Lijiang in 2009 were analyzed for pH, electrical conductivity, major ion (SO4 2?, Cl?, NO3 ?, Na+, Ca2+, Mg2+, and NH4 +) concentrations, and δ18O. The rainwater was alkaline with the volume-weighted mean pH of 6.34 (range: 5.71 to 7.11). Ion concentrations and δ18O during the pre-monsoon period were higher than in the monsoon. Air mass trajectories indicated that water vapor from South Asia was polluted with biomass burning emissions during the pre-monsoon. Precipitation during the monsoon was mainly transported by flow from the Bay of Bengal, and it showed high sea salt ion concentrations. Some precipitation brought by southwest monsoon originated from Burma; it was characterized by low δ18O and low sea salt, indicating that the water vapor from the region was mainly recycled monsoon precipitation. Water vapor from South China contained large quantities of SO4 2?, NO3 ?, and NH4 +. Throughout the study, Ca2+ was the main neutralizing agent. Positive matrix factorization analysis indicated that crustal dust sources contributed the following percentages of the ions Ca2+ 85 %, Mg2+ 75 %, K+ 61 %, NO3 ? 32 % and SO4 2? 21 %. Anthropogenic sources accounted for 79 %, 68 %, and 76 % of the SO4 2?, NO3 ? and NH4 +, respectively; and approximately 93 %, 99 %, and 37 % of the Cl?, Na+, and K+ were from a sea salt source.  相似文献   

14.
This study investigated meteorological, physical, and chemical characteristics of 2 severe Hwangsa (Asian dust, maximum average of PM10 above 1000 μg m?3) observed in Seoul, the capital city of Korea, during 30~31st May, 2008 (DSS2008) and 25~26th December, 2009 (DSS2009). DSS2008 and DSS2009 had a same source region and route. However, they have different meteorological conditions. DSS2009 had a shorter travel time from the source region to Korea and shorter duration time in Korea than DSS2008 due to a strong winter Siberian anticyclone. One of DSS2008 sample was affected by not only Asian dust but also a long-range transported haze due to consecutive influx after low pressure passed while DSS2009 sample collected only dust aerosol. For both cases, the mass concentration of coarse particles (PM10-1) increased by 3~14 times compared to that during non Asian dust period, however, that of fine particles (PM1) increased only in DSS2008. For DSS2008 water-soluble ion balance between anions and cations in fine mode was close to 1:1 while cations were higher than anions in coarse mode. NH4 + and Ca2+ were found to be the main contributing factors for the neutralization. Cl? loss was observed about 60% indicating an active interaction of Na+ with pollutants. Reconstruction of chemical compositions showed relatively high concentrations of secondary pollutants (NH4NO3 and (NH4)2SO4), CaCO3, and Ca(NO3)2 compared to that during non Asian dust period. DSS2009 exhibited the typical characteristics of Asian dust having a high concentration of Ca2+ with higher equivalent concentration of cations than anions in all size bins. Cl? loss was hardly observed. The secondary pollutants were lower than that of non Asian dust cases. The result of reconstruction of ionic components indicated the CaCO3 derived from soil particle, CaSO4, and Ca (NO3)2 were dominant in DSS2009.  相似文献   

15.
An in-cloud scavenging case study of the major ions (NH4 +, SO4 2- and NO3 -) determining the cloudwater composition at a mountain site (1620 m.a.s.l.) is presented. A comparison between in-cloud measurements of the cloudwater composition, liquid water content, gas concentrations and aerosol concentrations and pre-cloud gas and aerosol concentrations yields the following results. Cloudwater concentrations resulted from scavenging of about half of the available NH3, aerosol NH4 +, aerosol NO3 -, and aerosol SO4 2-. Approximately a third of the SO2 was scavenged by the cloudwater and oxidized to SO4 2-. Cloud acidity during the first two hours of cloud interception (pH 3.24) was determined mostly by the scavenged gases (NH3, SO2, and HNO3); aerosol contributions to the acidity were found to be small. Observations of gas and aerosol concentrations at three elevations prior to several winter precipitation events indicated that NH3 concentrations are typically half (12–80 %) of the total (gas and aerosol) N (-III) concentrations. HNO3 typically is present at much lower concentrations (1–55 %) than aerosol NO3 -. Concentrations of SO2 are a substantial component of total sulfur, with concentrations averaging 60 % (14–76 %) of the total S (IV and VI).  相似文献   

16.
The samples of water-soluble inorganic ions (WSIs), including anions (F?, Cl?, SO42?, NO3?) and cations (NH4+, K+, Na+, Ca2+, Mg2+) in 8 size-segregated particle matter (PM), were collected using a sampler (with 8 nominal cut-sizes ranged from 0.43 to 9.0 μm) from October 2008 to September 2009 at five sites in both polluted and background regions of a coastal city, Xiamen. The results showed that particulate matters in the fine mode (PM2.1, Dp < 2.1 μm) comprised large part of mass concentrations of aerosols, which accounted for 45.56–51.27%, 40.04–60.81%, 42.02–60.81%, and 40.46–57.07% of the total particulate mass in spring, summer, autumn, and winter, respectively. The water-soluble ionic species in the fine mode at five sampling sites varied from 15.33 to 33.82 (spring), 14.03 to 28.06 (summer), 33.47 to 72.52 (autumn), and 48.39 to 69.75 μg m? 3 (winter), respectively, which accounted for 57.30 ± 6.51% of the PM2.1 mass concentrations. Secondary pollutants of NH4+, SO42? and NO3? were the dominant contributors of WSIs, which suggested that pollutants from anthropogenic activities, such as SO2, NOx were formed in aerosols by photochemical reactions. The size distributions of Na+, Cl?, SO42? and NO3? were bimodal, peaking at 0.43–0.65 μm and 3.3–5.8 μm. Although some ions, such as NH4+ presented bimodal distributions, the coarse mode was insignificant compared to the fine mode. Ca2+ and Mg2+ exhibited unimodal distributions at all sampling sites, peaking at 2.1–3.3 μm, while K+ having a bimodal distributions with a major peak at 0.43–0.65 μm and a minor one at 3.3–4.7 μm, were used in most of samples. Seasonal and spatial variations in the size-distribution profiles suggested that meteorological conditions (seasonal patterns) and sampling locations (geographical patterns) were the main factors determining the formation of secondary aerosols and characteristics of size distributions for WSIs.  相似文献   

17.
Cloud/fog samples were collected during spring of 2007 in the highly polluted North China Plain in order to examine the impact of pollution and dust particles on cloud water chemistry. The volume weighted mean pH of cloud water was 3.68. The cloud acidity was shown to be associated with air mass origins. Cloud water with its air mass trajectories originating from the southern part of China was more acidic than those from northern China. Anthropogenic source and dust had obvious impact on cloud water composition as indicated by the very high mean concentrations of SO42? (1331.65 μeq L? 1), NO3? (772.44 μeq L? 1), NH4+ (1375.92 μeq L? 1) and Ca2+ (625.81 μeq L? 1) in the observation periods. During sandstorm days, cloud pH values were relatively high, and the concentrations of all the ions in cloud water reached unusual high levels. Significant decreases in the mass concentrations of PM2.5 and PM10 were observed during cloud events. The average scavenging ratio for PM2.5 and PM10 was 52.0% and 55.7%, respectively. Among the soluble ions in fine particles, NO3?, K+ and NH4+ tend to be more easily scavenged than Ca2+ and Na+.  相似文献   

18.
To characterize atmospheric particulate matter equal or less than 2.5 μm in diameter (PM2.5) over the Tropical Atlantic Ocean, aerosol sampling was carried out in Puerto Rico during August and September, 2006. Aerosols were analyzed by ion chromatography for water-soluble inorganic and organic ions (including Na+, NH4 +, Mg2+, Ca2+, K+, Cl?, SO4 2?, NH4 +, F?, methanesulfonate (MSA), and oxalate), by inductive coupled plasma mass spectrometry (ICPMS) for trace elements (Al, Fe, Zn, Mn, Cu, Ni, V, Pb, Cr, Sb, Co, Sc, Cd), and by scanning electron microscopy for individual aerosol particle composition and morphology. The results show that the dominant cations in aerosols were Na+, (mean: 631 ng m?3), accounting for 63.8 % of the total cation and NH4 + (mean: 164 ng m?3), accounting for 13.8 % of the total cation measured in this study. The main inorganic anions were Cl? (576 ng m?3, 54.1 %) and SO4 2? (596 ng m?3, 38.0 %). The main organic anion was oxalate (18 ng m?3). Crustal enrichment factor calculations identified 62 % of the trace elements measured (Cu, Ni, V, Co, Al, Mn, Fe, Sc, and Cr) with crustal origin. Single particle analysis demonstrated that 40 % of the aerosol particles examined were Cl? rich particles as sodium chloride from seawater and 34 % of the total particles were Si-rich particles, mainly in the form of aluminosilicates from dust material. Based on the combination of air-mass trajectories, cluster analysis and principal component analysis, the major sources of these PM2.5 particles include marine, Saharan dust and biomass burning from West Africa; however, volcanic emissions from the Soufriere Hills in Montserrat had significant impact on aerosol composition in this region at the time of sample collection.  相似文献   

19.
The chemical compositions (Na+, NH4 +, K+, Mg2+, Ca2+, Cl?, NO2 ?, NO3 ?, SO4 2?, HCO3 ?) of wet precipitation and nitrogen isotope compositions δ15N(NH4 +) were studied from January to December 2010 in Wroc?aw (SW Poland). Results of a principle component analysis show that 82 % of the data variability can be explained by three main factors: 1) F1 (40 %) observed during vegetative season (electrical conductivity, HCO3 ?, NO3 ?, NO2 ?, NH4 + and SO4 2?), mainly controlling rainwater mineralization; 2) F2 (26 %) observed during vegetative and heating seasons (K+, Ca2+ and Mg2+), probably representing a combination of two processes: anthropogenic dusts and fertilizers application in agricultural fields, and 3) F3 (16 %) reported mainly during heating season (Na+ and Cl?) probably indicating the influence of marine aerosols. Variations of δ15N(NH4 +) from ?11.5 to 18.5?‰ identify three main pathways for the formation of NH4 +: 1) equilibrium fractionation between NH3 and NH4 +; 2) kinetic exchange between NH3 and NH4 +; 3) NH4 + exchange between atmospheric salts particles and precipitation. The coupled chemical/statistical analysis and δ15N(NH4 +) approach shows that while fossil fuels burning is the main source of NH4 + in precipitation during the heating season, during the vegetative season NH4 + originates from local sewage irrigation fields in Osobowice or agricultural fertilizers.  相似文献   

20.
Zhang  Xiaoyu  Ji  Guixiang  Peng  Xiaowu  Kong  Lingya  Zhao  Xin  Ying  Rongrong  Yin  Wenjun  Xu  Tian  Cheng  Juan  Wang  Lin 《Journal of Atmospheric Chemistry》2022,79(2):101-115

In this study, 123 PM2.5 filter samples were collected in Wuhan, Hubei province from December 2014 to November 2015. Water- soluble inorganic ions (WSIIs), elemental carbon (EC), organic carbon (OC) and inorganic elements were measured. Source apportionment and back trajectory was investigated by the positive matrix factorization (PMF) model and the hybrid single particle lagrangian integrated trajectory (HYSPLIT) model, respectively. The annual PM2.5 concentration was 80.5?±?38.2 μg/m3, with higher PM2.5 in winter and lower in summer. WSIIs, OC, EC, as well as elements contributed 46.8%, 14.8%, 6.7% and 8% to PM2.5 mass concentration, respectively. SO42?, NO3? and NH4+ were the dominant components, accounting for 40.2% of PM2.5 concentrations. S, K, Cl, Ba, Fe, Ca and I were the main inorganic elements, and accounted for 65.2% of the elemental composition. The ratio of NO3?/SO42? was 0.86?±?0.72, indicating that stationary sources play dominant role on PM2.5 concentration. The ratio of OC/EC was 2.9?±?1.4, suggesting the existence of secondary organic carbon (SOC). Five sources were identified using PMF model, which included secondary inorganic aerosols (SIA), coal combustion, industry, vehicle emission, fugitive dust. SIA, coal combustion, as well as industry were the dominant contributors to PM2.5 pollution, accounting for 34.7%, 20.5%, 19.6%, respectively.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号