首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Haze-fog conditions over northern India are associated with visibility degradation and severe attenuation of solar radiation by airborne particles with various chemical compositions. PM2.5 samples have been collected in Delhi, India from December 2011 to November 2012 and analyzed for carbonaceous and inorganic species. PM10 measurements were made simultaneously such that PM10–2.5 could be estimated by difference. This study analyzes the temporal variation of PM2.5 and carbonaceous particles (CP), focusing on identification of the primary and secondary aerosol emissions, estimations of light extinction coefficient (bext) and the contributions by the major PM2.5 chemical components. The annual mean concentrations of PM2.5, organic carbon (OC), elemental carbon (EC) and PM10–2.5 were found to be 153.6 ± 59.8, 33.5 ± 15.9, 6.9 ± 3.9 and 91.1 ± 99.9 μg m?3, respectively. Total CP, secondary organic aerosols and major anions (e.g., SO4 2? and NO3 ?) maximize during the post-monsoon and winter due to fossil fuel combustion and biomass burning. PM10–2.5 is more abundant during the pre-monsoon and post-monsoon. The OC/EC varies from 2.45 to 9.26 (mean of 5.18 ± 1.47), indicating the influence of multiple combustion sources. The bext exhibits highest values (910 ± 280 and 1221 ± 371 Mm?1) in post-monsoon and winter and lowest in monsoon (363 ± 110 and 457 ± 133 Mm?1) as estimated via the original and revised IMPROVE algorithms, respectively. Organic matter (OM =1.6 × OC) accounts for ~39 % and ~48 % of the bext, followed by (NH4)2SO4 (~21 % and ~24 %) and EC (~13 % and ~10 %), according to the original and revised algorithms, respectively. The bext estimates via the two IMPROVE versions are highly correlated (R2 = 0.95, root mean square error = 38 % and mean bias error = 28 %) and are strongly related to visibility impairment (r = ?0.72), mostly associated with anthropogenic rather than natural PM contributions. Therefore, reduction of CP and precursor gas emissions represents an urgent opportunity for air quality improvement across Delhi.  相似文献   

2.
This study elucidates the characteristics of ambient PM2.5 (fine) and PM1 (submicron) samples collected between July 2009 and June 2010 in Raipur, India, in terms of water soluble ions, i.e. Na+, NH 4 + , K+, Mg2+, Ca2+, Cl?, NO 3 ? and SO 4 2? . The total number of PM2.5 and PM1 samples collected with eight stage cascade impactor was 120. Annual mean concentrations of PM2.5 and PM1 were 150.9?±?78.6 μg/m3 and 72.5?±?39.0 μg/m3, respectively. The higher particulate matter (PM) mass concentrations during the winter season are essentially due to the increase of biomass burning and temperature inversion. Out of above 8 ions, the most abundant ions were SO 4 2? , NO 3 ? and NH 4 + for both PM2.5 and PM1 aerosols; their average concentrations were 7.86?±?5.86 μg/m3, 3.12?±?2.63 μg/m3 and 1.94?±?1.28 μg/m3 for PM2.5, and 5.61?±?3.79 μg/m3, 1.81?±?1.21 μg/m3 and 1.26?±?0.88 μg/m3 for PM1, respectively. The major secondary species SO 4 2? , NO 3 ? and NH 4 + accounted for 5.81%, 1.88% and 1.40% of the total mass of PM2.5 and 11.10%, 2.68%, and 2.48% of the total mass of PM1, respectively. The source identification was conducted for the ionic species in PM2.5 and PM1 aerosols. The results are discussed by the way of correlations and principal component analysis. Spearman correlation indicated that Cl? and K+ in PM2.5 and PM1 can be originated from similar type of sources. Principal component analysis reveals that there are two major sources (anthropogenic and natural such as soil derived particles) for PM2.5 and PM1 fractions.  相似文献   

3.
Zhang  Xiaoyu  Ji  Guixiang  Peng  Xiaowu  Kong  Lingya  Zhao  Xin  Ying  Rongrong  Yin  Wenjun  Xu  Tian  Cheng  Juan  Wang  Lin 《Journal of Atmospheric Chemistry》2022,79(2):101-115

In this study, 123 PM2.5 filter samples were collected in Wuhan, Hubei province from December 2014 to November 2015. Water- soluble inorganic ions (WSIIs), elemental carbon (EC), organic carbon (OC) and inorganic elements were measured. Source apportionment and back trajectory was investigated by the positive matrix factorization (PMF) model and the hybrid single particle lagrangian integrated trajectory (HYSPLIT) model, respectively. The annual PM2.5 concentration was 80.5?±?38.2 μg/m3, with higher PM2.5 in winter and lower in summer. WSIIs, OC, EC, as well as elements contributed 46.8%, 14.8%, 6.7% and 8% to PM2.5 mass concentration, respectively. SO42?, NO3? and NH4+ were the dominant components, accounting for 40.2% of PM2.5 concentrations. S, K, Cl, Ba, Fe, Ca and I were the main inorganic elements, and accounted for 65.2% of the elemental composition. The ratio of NO3?/SO42? was 0.86?±?0.72, indicating that stationary sources play dominant role on PM2.5 concentration. The ratio of OC/EC was 2.9?±?1.4, suggesting the existence of secondary organic carbon (SOC). Five sources were identified using PMF model, which included secondary inorganic aerosols (SIA), coal combustion, industry, vehicle emission, fugitive dust. SIA, coal combustion, as well as industry were the dominant contributors to PM2.5 pollution, accounting for 34.7%, 20.5%, 19.6%, respectively.

  相似文献   

4.
To characterize atmospheric particulate matter equal or less than 2.5 μm in diameter (PM2.5) over the Tropical Atlantic Ocean, aerosol sampling was carried out in Puerto Rico during August and September, 2006. Aerosols were analyzed by ion chromatography for water-soluble inorganic and organic ions (including Na+, NH4 +, Mg2+, Ca2+, K+, Cl?, SO4 2?, NH4 +, F?, methanesulfonate (MSA), and oxalate), by inductive coupled plasma mass spectrometry (ICPMS) for trace elements (Al, Fe, Zn, Mn, Cu, Ni, V, Pb, Cr, Sb, Co, Sc, Cd), and by scanning electron microscopy for individual aerosol particle composition and morphology. The results show that the dominant cations in aerosols were Na+, (mean: 631 ng m?3), accounting for 63.8 % of the total cation and NH4 + (mean: 164 ng m?3), accounting for 13.8 % of the total cation measured in this study. The main inorganic anions were Cl? (576 ng m?3, 54.1 %) and SO4 2? (596 ng m?3, 38.0 %). The main organic anion was oxalate (18 ng m?3). Crustal enrichment factor calculations identified 62 % of the trace elements measured (Cu, Ni, V, Co, Al, Mn, Fe, Sc, and Cr) with crustal origin. Single particle analysis demonstrated that 40 % of the aerosol particles examined were Cl? rich particles as sodium chloride from seawater and 34 % of the total particles were Si-rich particles, mainly in the form of aluminosilicates from dust material. Based on the combination of air-mass trajectories, cluster analysis and principal component analysis, the major sources of these PM2.5 particles include marine, Saharan dust and biomass burning from West Africa; however, volcanic emissions from the Soufriere Hills in Montserrat had significant impact on aerosol composition in this region at the time of sample collection.  相似文献   

5.

Size-segregated aerosol particles were collected using a high volume MOUDI sampler at a coastal urban site in Xiamen Bay, China, from March 2018 to June 2020 to examine the seasonal characteristics of aerosol and water-soluble inorganic ions (WSIIs) and the dry deposition of nitrogen species. During the study period, the annual average concentrations of PM1, PM2.5, PM10, and TSP were 14.8?±?5.6, 21.1?±?9.0, 35.4?±?14.2 μg m?3, and 45.2?±?21.3 μg m?3, respectively. The seasonal variations of aerosol concentrations were impacted by the monsoon with the lowest value in summer and the higher values in other seasons. For WSIIs, the annual average concentrations were 6.3?±?3.3, 2.1?±?1.2, 3.3?±?1.5, and 1.6?±?0.8 μg m?3 in PM1, PM1-2.5, PM2.5–10, and PM>10, respectively. In addition, pronounced seasonal variations of WSIIs in PM1 and PM1-2.5 were observed, with the highest concentration in spring-winter and the lowest in summer. The size distribution showed that SO42?, NH4+ and K+ were consistently present in the submicron particles while Ca2+, Mg2+, Na+ and Cl? mainly accumulated in the size range of 2.5–10 μm, reflecting their different dominant sources. In spring, fall and winter, a bimodal distribution of NO3? was observed with one peak at 2.5–10 μm and another peak at 0.44–1 μm. In summer, however, the fine mode peak disappeared, likely due to the unfavorable conditions for the formation of NH4NO3. For NH4+ and SO42?, their dominant peak at 0.25–0.44 μm in summer and fall shifted to 0.44–1 μm in spring and winter. Although the concentration of NO3–N was lower than NH4–N, the dry deposition flux of NO3–N (35.77?±?24.49 μmol N m?2 d?1) was much higher than that of NH4–N (10.95?±?11.89 μmol N m?2 d?1), mainly due to the larger deposition velocities of NO3–N. The contribution of sea-salt particles to the total particulate inorganic N deposition was estimated to be 23.9—52.8%. Dry deposition of particulate inorganic N accounted for 0.95% of other terrestrial N influxes. The annual total N deposition can create a new productivity of 3.55 mgC m?2 d?1, accounting for 1.3–4.7% of the primary productivity in Xiamen Bay. In light of these results, atmospheric N deposition could have a significant influence on biogeochemistry cycle of nutrients with respect to projected increase of anthropogenic emissions from mobile sources in coastal region.

  相似文献   

6.

This study presents the chemical composition (carbonaceous and nitrogenous components) of aerosols (PM2.5 and PM10) along with stable isotopic composition (δ13C and δ15N) collected during winter and the summer months of 2015–16 to explore the possible sources of aerosols in megacity Delhi, India. The mean concentrations (mean?±?standard deviation at 1σ) of PM2.5 and PM10 were 223?±?69 µg m?3 and 328?±?65 µg m?3, respectively during winter season whereas the mean concentrations of PM2.5 and PM10 were 147?±?22 µg m?3 and 236?±?61 µg m?3, respectively during summer season. The mean value of δ13C (range: ??26.4 to ??23.4‰) and δ15N (range: 3.3 to 14.4‰) of PM2.5 were ??25.3?±?0.5‰ and 8.9?±?2.1‰, respectively during winter season whereas the mean value of δ13C (range: ??26.7 to ??25.3‰) and δ15N (range: 2.8 to 11.5‰) of PM2.5 were ??26.1?±?0.4‰ and 6.4?±?2.5‰, respectively during the summer season. Comparison of stable C and N isotopic fingerprints of major identical sources suggested that major portion of PM2.5 and PM10 at Delhi were mainly from fossil fuel combustion (FFC), biomass burning (BB) (C-3 and C-4 type vegitation), secondary aerosols (SAs) and road dust (SD). The correlation analysis of δ13C with other C (OC, TC, OC/EC and OC/WSOC) components and δ15N with other N components (TN, NH4+ and NO3?) are also support the source identification of isotopic signatures.

  相似文献   

7.
Ambient concentrations of organic carbon (OC), elemental carbon (EC) and water soluble inorganic ionic components (WSIC) of PM10 were studied at Giridih, Jharkhand, a sub-urban site near the Indo Gangatic Plain (IGP) of India during two consecutive winter seasons (November 2011–February 2012 and November 2012–February 2013). The abundance of carbonaceous and water soluble inorganic species of PM10 was recorded at the study site of Giridih. During winter 2011–12, the average concentrations of PM10, OC, EC and WSIC were 180.2?±?46.4; 37.2?±?6.2; 15.2?±?5.4 and 18.0?±?5.1 μg m?3, respectively. Similar concentrations of PM10, OC, EC and WSIC were also recorded during winter 2012–13. In the present case, a positive linear trend is observed between OC and EC at sampling site of Giridih indicates the coal burning, as well as dispersed coal powder and vehicular emissions may be the source of carbonaceous aerosols. The principal components analysis (PCA) also identifies the contribution of coal burning? +?soil dust, vehicular emissions?+?biomass burning and seconday aerosol to PM10 mass concentration at the study site. Backward trajectoy and potential source contributing function (PSCF) analysis indicated that the aerosols being transported to Giridih from upwind IGP (Punjab, Haryana, Uttar Pradesh and Bihar) and surrounding region.  相似文献   

8.
Aerosol (PM10) samples were collected and its precursor gases, i.e., NH3, NO, NO2, and SO2 measured over Bay of Bengal (BoB) during winter months of December 2008 to January 2009 to understand the relationship between particular matter (PM) and precursor gases. The observations were done under the winter phase of Integrated Campaign on Aerosols, gases and Radiation Budget (W_ICARB). The distribution of water-soluble inorganic ionic composition (WSIC) and its interaction with precursor gases over BoB are reported in present case. Average atmospheric concentration of NH3, NO, NO2, and SO2 were recorded as 4.78?±?1.68, 1.89?±?1.26, 0.31?±?0.14, and 0.80?±?0.30?μg?m?3, whereas WSIC component of PM10, i.e., NH4 +, SO4 2?, NO3 ?, and Cl? were recorded as 1.96?±?1.66, 8.68?±?3.75, 1.92?±?1.75, and 2.48?±?0.78?μg?m?3, respectively. In the present case, abundance of nss-SO4 2? in the particulate matter is recorded as 18?%. It suggests the possibility of long-range transport as well as marine biogenic origin. Higher SO4 2?/(SO2?+?SO4 2?) equivalent molar ratio during the campaign indicates the gas-to-particle conversion with great efficiency over the study region.  相似文献   

9.
During the MILAGRO campaign, March 2006, eight-stage cut impactors were used to sample atmospheric particles at Tecámac (T1 supersite), towards the northeast edge of the Mexico City Metropolitan Area, collecting fresh local emissions and aged pollutants produced in Mexico City. Particle samples were analyzed to determine total mass concentrations of Ca2+, Mg2+, NH4 +, K+, Cl?, SO4 2?, and NO3 ?. Average concentrations were 22.1 ± 7.2 μg m?3 for PM10 and 18.3 ± 6.2 μg m?3 for PM1.8. A good correlation between PM10 and PM1.8, without influence from wind patterns, indicates that local emissions are more important than the city’s pollution transported to the site, despite the fact that Tecámac is just 40 km away from Mexico City. A lack of diurnal patterns in the PM2.5/PM1.8 ratio supports this conclusion. The inorganic composition of particles suggests that vehicles, soil resuspension, and industries are the main pollutant sources. Finally, the particles were found to be neutralized, in agreement with observations in the Mexico City Metropolitan Area.  相似文献   

10.
Aerosols consist of organic and inorganic species, and the composition and concentration of these species depends on their sources, chemical transformation and sinks. In this study an assessment of major inorganic ions determined in three aerosol particle size ranges collected for 1 year at Welgegund in South Africa was conducted. SO42? and ammonium (NH4+) dominated the PM1 size fraction, while SO42? and nitrate (NO3) dominated the PM1–2.5 and PM2.5–10 size fractions. SO42? had the highest contribution in the two smaller size fractions, while NO3? had the highest contribution in the PM2.5–10 size fraction. SO42? and NO3? levels were attributed to the impacts of aged air masses passing over major anthropogenic source regions. Comparison of inorganic ion concentrations to levels thereof within a source region influencing Welgegund, indicated higher levels of most species within the source region. However, the comparative ratio of SO42? was significantly lower due to SO42? being formed distant from SO2 emissions and submicron SO42? having longer atmospheric residencies. The PM at Welgegund was determined to be acidic, mainly due to high concentrations of SO42?. PM1 and PM1–2.5 fractions revealed a seasonal pattern, with higher inorganic ion concentrations measured from May to September. Higher concentrations were attributed to decreased wet removal, more pronounced inversion layers trapping pollutants, and increases in household combustion and wild fires during winter. Back trajectory analysis also revealed higher concentrations of inorganic ionic species corresponding to air mass movements over anthropogenic source regions.  相似文献   

11.
The new European Council Directive (PE-CONS 3696/07) frames the inhalable (PM10) and fine particles (PM2.5) on priority to chemically characterize these fractions in order to understand their possible relation with health effects. Considering this, PM2.5 was collected during four different seasons to evaluate the relative abundance of bulk elements (Cl, S, Si, Al, Br, Cu, Fe, Ti, Ca, K, Pb, Zn, Ni, Mn, Cr and V) and water soluble ions (F, Cl, NO2 , NO3 , SO4 2−, Na+, NH4 +, Ca2+ and Mg2+) over Menen, a Belgian city near the French border. The air quality over Menen is influenced by industrialized regions on both sides of the border. The most abundant ionic species were NO3 , SO4 2− and NH4 +, and they showed distinct seasonal variation. The elevated levels of NO3 during spring and summer were found to be related to the larger availability of the NOx precursor. The various elemental species analyzed were distinguished into crustal and anthropogenic source categories. The dominating elements were S and Cl in the PM2.5 particles. The anthropogenic fraction (e.g. Zn, Pb, and Cu) shows a more scattered abundance. Furthermore, the ions and elemental data were also processed using principal component analysis and cluster analysis to identify their sources and chemistry. These approach identifies anthropogenic (traffic and industrial) emissions as a major source for fine particles. The variations in the natural/anthropogenic fractions of PM2.5 were also found to be a function of meteorological conditions as well as of long-range transport of air masses from the industrialized regions of the continent. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

12.
The concentrations of PM10, PM2.5 and their water-soluble ionic species were determined for the samples collected during January to December, 2007 at New Delhi (28.63° N, 77.18° E), India. The annual mean PM10 and PM2.5 concentrations (± standard deviation) were about 219 (± 84) and 97 (±56) μgm−3 respectively, about twice the prescribed Indian National Ambient Air Quality Standards values. The monthly average ratio of PM2.5/PM10 varied between 0.18 (June) and 0.86 (February) with an annual mean of ∼0.48 (±0.2), suggesting the dominance of coarser in summer and fine size particles in winter. The difference between the concentrations of PM10 and PM2.5, is deemed as the contribution of the coarse fraction (PM10−2.5). The analyzed coarse fractions mainly composed of secondary inorganic aerosols species (16.0 μgm−3, 13.07%), mineral matter (12.32 μgm−3, 10.06%) and salt particles (4.92 μgm−3, 4.02%). PM2.5 are mainly made up of undetermined fractions (39.46 μgm−3, 40.9%), secondary inorganic aerosols (26.15 μgm−3, 27.1%), salt aerosols (22.48 μgm−3, 23.3%) and mineral matter (8.41 μgm−3, 8.7%). The black carbon aerosols concentrations measured at a nearby (∼300 m) location to aerosol sampling site, registered an annual mean of ∼14 (±12) μgm−3, which is significantly large compared to those observed at other locations in India. The source identifications are made for the ionic species in PM10 and PM2.5. The results are discussed by way of correlations and factor analyses. The significant correlations of Cl, SO42−, K+, Na+, Ca2+, NO3 and Mg2+ with PM2.5 on one hand and Mg2+ with PM10 on the other suggest the dominance of anthropogenic and soil origin aerosols in Delhi.  相似文献   

13.
In the present paper, we have characterized the ambient ammonia over Delhi along with other trace gases (NH3, NO, NO2, SO2 and CO) and particulates (PM2.5 and PM10) measured during December 2011 to June 2012. The average mixing ratios of ambient NH3, NO, NO2, SO2 and CO were recorded as 21.2 ± 5.4, 19.5 ± 4.9, 17.4 ± 1.4, 1.7 ± 0.5 ppb and 1.6 ± 0.7 ppm, respectively, during winter, whereas the average mixing ratios of ambient NH3, NO, NO2, SO2 and CO were recorded as 20.8 ± 4.7, 21.7 ± 6.3, 16.8 ± 3.1, 2.2 ± 0.8 ppb and 1.8 ± 0.9 ppm, respectively, during summer. In the present case, non-significant seasonal and diurnal variations of NH3, NO, NO2, SO2 and CO were observed during both the seasons. The average monthly NH3/NH4 + ratios varied from 0.28 to 2.56 with an average value of 1.46 in winter. The higher NH3/NH4 + ratio (3.5) observed in summer indicates the abundance of NH3 in the atmosphere during summer. The higher fraction of particulate NH4 + observed in winter than summer attributes to the conversion of gaseous NH3 into NH4 +. The results emphasized that the traffic could be one of the significant sources of ambient NH3 at the urban site of Delhi as illustrated by positive correlations of NH3 with traffic-related pollutants (NO, NO2 and CO). Surface wind analysis and wind directions also support the roadside traffic and agricultural activities at the nearby area indicating possible major sources of ambient NH3 at the study site.  相似文献   

14.
Gaseous pollutants and PM2.5 aerosol particles were investigated during a tropical storm and an air pollution episode in southern Taiwan. Field sampling and chemical analysis of particulate matter and gaseous pollutants were conducted in Daliao and Tzouying in the Kaohsiung area, using a denuder-filter pack system during the period of 22 October to 3 November 2004. Sulfate, nitrate and ammonium were the major ionic species in the PM2.5, accounting for 46 and 39% of the PM2.5 for Daliao and Tzouying, respectively. Higher PM2.5, Cl?, NO3? and NH4+, HNO2 and NH3 concentrations were found at night in both stations, whereas higher HNO3 was found during the day. In general, higher PM2.5, HCl, NH3, SO2, Cl?, NO3?, SO42? and NH4+ concentrations were found in Daliao. The synoptic weather during the experiment was first influenced by Typhoon NOCK-TEN, which resulted in the pollutant concentrations decreasing by about two-thirds. After the tropical thunderstorm system passed, the ambient air quality returned to the previous condition in 12 to 24 h. When there was a strong subsidence accompanied by a high-pressure system, a more stable environment with lower wind speed and mixing height resulted in higher PM2.5, as well as HNO2, NH3, SO42?, Cl?, NO3?, NH4+ and K+ concentrations during the episode days. The rainfall is mainly a scavenger of air pollutants in this study, and the stable atmospheric system and the high emission loading are the major reasons for high air pollutant concentrations.  相似文献   

15.
Long-term measurements of ambient particulate matter less than 2.5 μm in diameter (PM2.5) and its chemical compositions were performed at a rural site in Korea from December 2005 to August 2009. The average PM2.5 concentration was 31 μg m−3 for the whole sampling period, and showed a slightly downward annual trend. The major components of PM2.5 were organic carbon, SO42−, NO3, and NH4+, which accounted for 55 % of total PM2.5 mass on average. For the top 10 % of PM2.5 samples, anionic constituents and trace elements clearly increased while carbonaceous constituents and NH4+ remained relatively constant. Both Asian dust and fog events clearly increased PM2.5 concentrations, but affected its chemical composition differently. While trace elements significantly increased during Asian dust events, NO3, NH4+ and Cl were dramatically enhanced during fog events due to the formation of saturated or supersaturated salt solution. The back-trajectory based model, PSCF (Potential Source Contribution Function) identified the major industrial areas in Eastern China as the possible source areas for the high PM2.5 concentrations at the sampling site. Using factor analysis, soil, combustion processes, non-metal manufacture, and secondary PM2.5 sources accounted for 77 % of the total explained variance.  相似文献   

16.
PM10 samples were collected to characterize the seasonal and annual trends of carbonaceous content in PM10 at an urban site of megacity Delhi, India from January 2010 to December 2017. Organic carbon (OC) and elemental carbon (EC) concentrations were quantified by thermal-optical transmission (TOT) method of PM10 samples collected at Delhi. The average concentrations of PM10, OC, EC and TCA (total carbonaceous aerosol) were 222?±?87 (range: 48.2–583.8 μg m?3), 25.6?±?14.0 (range: 4.2–82.5 μg m?3), 8.7?±?5.8 (range: 0.8–35.6 μg m?3) and 54.7?±?30.6 μg m?3 (range: 8.4–175.2 μg m?3), respectively during entire sampling period. The average secondary organic carbon (SOC) concentration ranged from 2.5–9.1 μg m?3 in PM10, accounting from 14 to 28% of total OC mass concentration of PM10. Significant seasonal variations were recorded in concentrations of PM10, OC, EC and TCA with maxima during winter and minima during monsoon seasons. In the present study, the positive linear trend between OC and EC were recorded during winter (R2?=?0.53), summer (R2?=?0.59) and monsoon (R2?=?0.78) seasons. This behaviour suggests the contribution of similar sources and common atmospheric processes in both the fractions. OC/EC weight ratio suggested that vehicular emissions, fossil fuel combustion and biomass burning could be the major sources of carbonaceous aerosols of PM10 at the megacity Delhi, India. Trajectory analysis indicates that the air mass approches to the sampling site is mainly from Indo Gangetic plain (IGP) region (Uttar Pradesh, Haryana and Punjab etc.), Thar desert, Afghanistan, Pakistan and surrounding areas.  相似文献   

17.
Daily rainwater samples collected at Lijiang in 2009 were analyzed for pH, electrical conductivity, major ion (SO4 2?, Cl?, NO3 ?, Na+, Ca2+, Mg2+, and NH4 +) concentrations, and δ18O. The rainwater was alkaline with the volume-weighted mean pH of 6.34 (range: 5.71 to 7.11). Ion concentrations and δ18O during the pre-monsoon period were higher than in the monsoon. Air mass trajectories indicated that water vapor from South Asia was polluted with biomass burning emissions during the pre-monsoon. Precipitation during the monsoon was mainly transported by flow from the Bay of Bengal, and it showed high sea salt ion concentrations. Some precipitation brought by southwest monsoon originated from Burma; it was characterized by low δ18O and low sea salt, indicating that the water vapor from the region was mainly recycled monsoon precipitation. Water vapor from South China contained large quantities of SO4 2?, NO3 ?, and NH4 +. Throughout the study, Ca2+ was the main neutralizing agent. Positive matrix factorization analysis indicated that crustal dust sources contributed the following percentages of the ions Ca2+ 85 %, Mg2+ 75 %, K+ 61 %, NO3 ? 32 % and SO4 2? 21 %. Anthropogenic sources accounted for 79 %, 68 %, and 76 % of the SO4 2?, NO3 ? and NH4 +, respectively; and approximately 93 %, 99 %, and 37 % of the Cl?, Na+, and K+ were from a sea salt source.  相似文献   

18.
For the first time, simultaneous study on physical and chemical characteristics of PM10, PM2.5, and rainwater chemistry was attempted over the Bay of Bengal in monsoon season of 2009. The aerosols and rainwater samples were collected onboard ship ‘SK-261, ORV Sagar Kanya’ during Oceanographic Observations in the Northern Bay of Bengal under the Continental Tropical Convergence Zone (CTCZ) program conducted during 16 July to 19 Aug 2009. Aerosol samples collected by PM10 and PM2.5 were analyzed for various water soluble (Na+, K+, Ca2+, Mg2+, NH 4 + , Cl?, SO 4 2? and NO 3 ? and acid soluble (Fe2+, Al3+, Zn2+, Mn3+ and Ni2+) ionic constituents. The pH of rainwater varied from 5.10 to 7.04. Chloride ions contributed most to the total ion concentration in aerosol and rainwater, followed by Na+. Significant contributions of SO 4 2? , NO 3 ? and NH 4 + found in PM2.5, PM10 and high concentrations of TSP and non sea-salt SO 4 2? over the mid-ocean is attributed to the long range transport of anthropogenic pollution from the Indian continent. The scavenging ratio was maximum for coarse particles such as Ca2+ and minimum for fine particles like NH 4 + .  相似文献   

19.
2018年1月,利用颗粒物采样器采集武汉市大气PM2.5样品并进行水溶性无机离子(F-、Cl-、NO3-、SO42-、Na+、NH4+、K+、Mg2+、Ca2+)的分析.结果表明,NO3-、SO42-、NH4+是PM2.5中最主要的3种水溶性无机离子,除Mg2+与Ca2+外,PM2.5与WSⅡs (水溶性无机离子)之间的相关性显著,且移动源贡献占主导地位.阴阳离子平衡表明武汉市冬季灰霾期PM2.5呈中性或弱酸性.通过混合单粒子拉格朗日综合轨迹模式模拟并采用分层聚类得出了4种主要的后向气流轨迹及相应的PM2.5和水溶性离子浓度,结果表明区域传输对此次灰霾期影响较大.  相似文献   

20.

Pre and Post-Monsoon levels of ambient SO2, NO2, PM2.5 and the trace metals Fe, Cu, etc. were measured at industrial and residential regions of the Kochi urban area in South India for a period of two years. The mean PM2.5, SO2 and NO2 concentrations across all sites were 38.98?±?1.38 µg/m3, 2.78?±?0.85 µg/m3 and 11.90?±?4.68 µg/m3 respectively, which is lower than many other Indian cities. There was little difference in any on the measured species between the seasons. A few sites exceeded the NAAQS (define acronym and state standard) and most of the sites exceeded WHO (define acronym and state standard) standard for PM2.5. The average trace metal concentrations (ng/m3) were found to be Fe (32.58)?>?Zn (31.93)?>?Ni (10.13)?>?Cr (5.48)?>?Pb (5.37)?>?Cu (3.24). The maximum concentration of trace metals except Pb were reported in industrial areas. The enrichment factor, of metals relative to crustal material, indicated anthropogenic dominance over natural sources for the trace metal concentration in Kochi’s atmosphere. This work demonstrates the importance of air quality monitoring in this area.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号