首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 186 毫秒
1.
为了研究陕北风沙滩地区包气带风积沙的抗污能力,在榆林煤化工厂厂区及其周边地区选择4个试验点,采用双环入渗法,选择渣场炉渣浸出液(Cd、Cr、Cu、Mn、Ni和Pb重金属污染物溶液)进行渣场污水入渗试验,采用人工配置污染物溶液(COD、氨氮、F、石油类和挥发酚)进行了配污试点试验。渣场污水入渗试验过程中,由于水流的冲刷作用,剖面上大部分污染物的含量都小于入渗前的含量;而渗后样的测定结果则表明包气带风积沙对污水中Cr、Cu、Mn、Ni和Pb的净化能力较强。配污试点试验表明包气带对无机污染物的阻滞作用会延缓其对地下水的污染,石油类在包气带中的运移速度缓慢,难以在水流的作用下到达含水层,而COD容易造成地下水污染,挥发酚对含水层的污染能力要小于COD。应考虑采取适当方式降低地下水位,增大包气带厚度,以加强包气带对地下水的保护能力。  相似文献   

2.
在哈尔滨城市地质调查项目实测的地质、水文地质资料的基础上,利用DRASTIC方法,选择地下水埋深、净补给量、含水层介质、包气带影响等7个参数作为评价指标,建立哈尔滨地区地下水易污性评价体系,编制哈尔滨地区地下水易污性分区图。研究表明,哈尔滨地区地下水易污性较高的区域占17.1%,主要分布在松花江两岸,为地下水污染的高风险地区,应列为地下水资源管理重点防护区域。  相似文献   

3.
松花江佳木斯段潜水脆弱性评价   总被引:3,自引:0,他引:3  
鉴于松花江流域地下水的重要性和当前污染,运用改进的DRASTIC模型,对松花江佳木斯段5~10 km范围内潜水进行了脆弱性评价。选取净补给量、包气带介质、含水层厚度、地下水水位埋深、土地利用类型、污染源影响和地下水开采模数建成评价指标体系;采用层次分析法确定各指标权重,结合GIS技术实现了脆弱性分区,并将结果与地下水质评价结果进行对比;最后通过敏感度分析讨论了所选指标的合理性。结果表明:地下水脆弱性相对较低和低脆弱区共占研究区面积的82.76%;较高和高的区域仅占8.13%,主要分布在七水厂、江北水源地以及污染强度较大的点源污染周围。地下水埋深、包气带岩性和地下水开采模数是对潜水脆弱性影响最大的因素。评价结果比较真实地反映了松花江佳木斯段潜水脆弱性状况,对城市规划建设和地下水资源的可持续利用具有指导意义。  相似文献   

4.
针对在地下水资源评价中入渗补给量采用经验估算存在较大误差的问题,以神东矿区为例,在广泛调查矿区包气带岩性结构并结合野外取样、室内参数测定的基础上,采用数值模拟的方法建立包气带水分运移数值模拟模型,定量模拟矿区内不同地段降雨入渗强度,探讨影响降雨入渗强度的主要因素,计算得出研究区降雨入渗系数大致在0.18~0.27,分析认为影响降雨入渗强度的因素有降雨量、潜水埋深、包气带岩性等。其中在研究区广泛分布的风积沙对地下水资源起到了一定的保护作用。  相似文献   

5.
包气带—含水层地下水污染风险评估研究进展   总被引:1,自引:0,他引:1  
包气带—含水层作为地表水和地下水之间水循环和溶质迁移的重要介质,是地球科学领域中的研究热点。以包气带—含水层中地下水污染风险评估为综述对象,从包气带—含水层地下水污染现状出发,总结了包气带—含水层的污染现状、表征、渗流与溶质迁移及其影响关键参数研究等方面的进展,最后分析包气带—含水层地下水污染风险评估存在的问题及今后的研究方向,指出尤其应重点考虑基于逾渗阈值开展地下水污染风险评估研究。  相似文献   

6.
在地表等量氮输入条件下,包气带中硝酸盐含量分布是其抗污染能力的直接表征。阐明不同包气带中硝酸盐分布的差异并分析其成因对于评价下覆含水层的硝酸盐污染脆弱性、保护地下水资源免遭硝酸盐污染,具有重要意义。本文基于太行山山前冲洪积扇上栾城和正定两个16m深包气带硝酸盐含量数据,指出两个剖面上包气带中硝酸盐分布特征的差异性。分析研究区的施肥历史、大气降水的入渗补给强度及土壤有机质含量,认为包气带水分运移速度和反硝化能力是导致包气带硝酸盐分布差异的两个关键因素。在分析N同位素测试技术进步的基础上,指出利用同位素技术对包气带中的反硝化能力的定量化研究有望取得新进展。  相似文献   

7.
《地下水》2017,(3)
在野外实地调查基础上,对神木县窟野河地下水类型、补径排条件以及地下水水化学特征进行分析,并计算研究区地下水资源总量。结果表明:研究区内含水层分为河谷区第四系冲积层与中生界碎屑岩类风化裂隙带统一含水岩层、第四系风积黄土裂隙孔洞潜水含水层、中生界碎屑岩类裂隙含水层。大气降水入渗是区内地下水主要补给来源,区内潜水含水层容积储存量为1 195.10×10~4m~3。通过对研究区水文地质条件的分析和地下水资源的计算评价,为后续评价其地下水可开采资源提供理论基础。  相似文献   

8.
华北平原地下水脆弱性评价   总被引:4,自引:0,他引:4       下载免费PDF全文
针对华北平原地域广阔,地貌和水文地质条件复杂、地下水开发利用程度高,地下水位埋深、包气带和含水层岩性差异性大等特点,基于大量钻孔和地下水位监测资料,厘定了包气带岩性和地下水位埋深变化对脆弱性评价影响,进而建立适宜华北平原的DRITC评价指标体系,并应用于华北平原地下水脆弱性评价。评价中,根据华北平原水文地质条件,划分4评价分区,剖分2 km×2 km单元34 253个,采用地下水位埋深、净补给量、包气带岩性、含水层累积厚度和渗透系数5个因子作为评价指标,求得地下水脆弱性综合指数及脆弱性分布图。结果表明,华北平原山前冲洪积扇和古黄河冲洪积平原的现代黄河影响带地下水脆弱性高或较高。野外采样7 472组地下水有机污染测试分析结果佐证,脆弱性高或较高区有机污染检出项数多,其他地区较少,由此验证评价结果的客观性。  相似文献   

9.
北京市海淀区地下水污染风险性评价   总被引:10,自引:0,他引:10  
地下水受污染的风险性主要由含水层本身的防污性能、人为污染源污染地下水的灾害等级和地下水受污染后造成的后果严重程度等因素决定的,地下水污染风险性高是指高价值的地下水资源受到灾害高的污染源的污染可能性大,评价地下水污染风险需要编制3张基础图:地下水易污性图、地下水价值图和地下水污染源灾害分级图。本文介绍并应用了定量评价的DRASTIC方法和定性评价的矩阵方法,定量和定性相结合,综合了含水层易污性、地下水开发利用价值和污染源对地下水影响等因素,对北京市海淀区浅层地下水受污染的风险性进行了综合评价。  相似文献   

10.
卫河是海河流域污染最严重的河流之一,该河如何影响附近浅层地下水的水质是长期受到重视但缺乏定量研究的关键问题。为探讨这一问题,利用Hydrus 2d模型模拟河流非饱和带氮素的迁移转化,以GMS软件中的RT3D模块模拟氮素在饱和含水层中的运移,将包气带底部淋滤出的污染物浓度定为饱和带溶质运移模型的上边界条件,首次实现了河流非饱和带饱和含水层氮素运移的联合模拟,得到河流线状污染源对浅层地下水的影响程度及范围。研究结果表明:由于吸附作用、硝化反硝化作用的存在,从河流上游到下游,包气带厚度加大,运移至含水层中的NH4-N、NO2-N浓度呈下降趋势,而NO3-N浓度则呈上升趋势。随着入渗时间的增长,进入饱和含水层中的NH4-N、NO2-N、NO3-N的浓度逐渐升高并最终保持稳定。污染的河流对浅层地下水的影响呈带状分布,污染物随入渗水流在包气带中垂直入渗;在饱和含水层中以水平运移为主,污染羽偏向地下水流动的方向,其影响距离不超过500 m。  相似文献   

11.
According to the characteristics of groundwater in arid area, this paper proposes DRAV model for groundwater vulnerability assessment, where D is groundwater depth, R is the net recharge of aquifer, A is the aquifer characteristics, and V is the lithology of vadose zone. As a case study, the paper assesses the vulnerability of pore phreatic water in Tarim Basin of Xinjiang, China by using the DRAV model. The results indicate that the areas of phreatic water with vulnerability index ranges of 2–4, 4–6, 6–8 and >8 accounting for 10.1, 80.4, 9.2 and 0.2% of the total plain area of the Tarim Basin respectively, and the areas with the latter two vulnerability ranges (6–8 and >8) are mainly located in the irrigation districts with thin soil layer (20–30 cm thick surface soil of vadose zone, mainly with underlying sandy gravel) and with silty and fine sand layer. Such vadose zone generally lacks sandy loam and clayey soil and has larger recharge by infiltration of irrigation water.  相似文献   

12.
区域地下水系统防污性能评价,面临影响因子多又复杂、评价指标难以客观性选定和权重不易确定等难题,以至严重影响评价结果的可信性。本文以鲁北平原为例,在以往地下水脆弱性评价常用的DRASTIC模型基础上,采用创新的迭置指数方法,改进为"DRITCS法",选择地下水位埋深、包气带综合岩性、地表2 m内单层厚度大于0.5 m的粘土层厚、含水砂层厚度及其渗透系数、和地下水净补给量等因子,组成区域地下水系统防污性能评价模型。合理地确定了区域地下水系统防污性能评价中关键指标——包气带粘性土层变化影响,并在鲁北平原示范性应用和通过以面源污染为主的三氮污染现状验证的结果表明:本文提出的方法能够客观地反映流域性相变造成的地下水系统防污性能空间差异性和区位分布特征,具有较强的实用性。  相似文献   

13.
Depth to water, net recharge, aquifer media, soil media, topography, impact of the vadose zone media, and hydraulic conductivity of the aquifer (DRASTIC) model based on a geographic information system (GIS) is the most widely adopted model for the evaluation of groundwater vulnerability. However, the model had its own disadvantages in various aspects. In this work, several methods and the technologies have been introduced to improve on the traditional model. The type of the aquifer was replaced by the thickness of the aquifer, and the index of topography was removed. The indexes of the exploitation of the groundwater and the type of land use that reflected the special vulnerability were added to the system. Furthermore, considering the wideness of the study area, the fixed weights in the DRASTIC model were not suitable. An analytic hierarchy process (AHP) method and an entropy weight (Ew) method were introduced to calculate the weights of parameters. Then, the Spearman Rho correlation coefficients between IVI and the Nemerow synthetical pollution index (NI) of the groundwater quality were significantly improved, after the four steps of modification. The level differences with little gaps between Nemerow comprehensive pollution indexes and groundwater vulnerability occupied the proportion of the area from 75.68 to 84.04%, and finally, a single-parameter sensitivity analysis for the two models was used to compute the effective weights of these parameters. By comparison, the DRMSICEL model seems to perform better than the DRASTIC model in the study area. And the results show discrepancies between the vulnerability indices and groundwater quality as indicated by existence of vulnerable areas with bad water quality and vice versa.  相似文献   

14.
Groundwater is inherently susceptible to contamination from anthropogenic activities and remediation is very difficult and expensive. Prevention of contamination is hence critical in effective groundwater management. In this paper an attempt has been made to assess aquifer vulnerability at the Russeifa solid waste landfill. This disposal site is placed at the most important aquifer in Jordan, which is known as Amman-Wadi Sir (B2/A7). The daily-generated leachate within the landfill is about 160 m3/day and there is no system for collecting and treating this leachate. Therefore, the leachate infiltrates to groundwater and degrades the quality of the groundwater. The area is strongly vulnerable to pollution due to the presence of intensive agricultural activity, the solid waste disposal site and industries. Increasing groundwater demand makes the protection of the aquifer from pollution crucial. Physical and hydrogeological characteristics make the aquifer susceptible to pollution. The vulnerability of groundwater to contamination in the study area was quantified using the DRASTIC model. The DRASTIC model uses the following seven parameters: depth to water, recharge, aquifer media, soil media, topography, impact on vadose zone and hydraulic conductivity. The water level data were measured in the observation wells within the disposal site. The recharge is derived based on precipitation, land use and soil characteristics. The aquifer media was obtained from a geological map of the area. The topography is obtained from the Natural Resources Authority of Jordan, 1:50,000 scale topographic map. The impact on the vadose zone is defined by the soil permeability and depth to water. The hydraulic conductivity was obtained from the field pumping tests. The calculated DRASTIC index number indicates a moderate pollution potential for the study area.  相似文献   

15.
Groundwater aquifer vulnerability has been assessed by incorporating the major geological and hydrogeological factors that affect and control the groundwater contamination using GIS-based DRASTIC model along with solute transport modeling. This work demonstrates the potential of GIS to derive a vulnerability map by overlying various spatially referenced digital data layers (i.e., depth to water, net recharge, aquifer media, soil media, topography, the impact of vadose zone and hydraulic conductivity) that portrays cumulative aquifer sensitivity ratings in Kishangarh, Rajasthan. It provides a relative indication of groundwater aquifer vulnerability to contamination. The soil moisture flow and solute transport regimes of the vadose zone associated with specific hydrogeological conditions play a crucial role in pollution risk assessment of the underlying groundwater resources. An effort has been made to map the vulnerability of shallow groundwater to surface pollutants of thestudy area, using soil moisture flow and contaminant transport modeling. The classical advection-dispersion equation coupled with Richard’s equation is numerically simulated at different point locations for assessing the intrinsic vulnerability of the valley. The role of soil type, slope, and the land-use cover is considered for estimating the transient flux at the top boundary from daily precipitation and evapotranspiration data of the study area. The time required by the solute peak to travel from the surface to the groundwater table at the bottom of the soil profile is considered as an indicator of avulnerability index. Results show a high vulnerability in the southern region, whereas low vulnerability is observed in the northeast and northern parts. The results have recognized four aquifer vulnerability zones based on DRASTIC vulnerability index (DVI), which ranged from 45 to 178. It has been deduced that approximately 18, 25, 34, and 23% of the area lies in negligible, low, medium and high vulnerability zones, respectively. The study may assist in decision making related to theplanning of industrial locations and the sustainable water resources development of the selected semi-arid area.  相似文献   

16.
The present research aims to derive the intrinsic vulnerability of groundwater against contamination using the GIS platform. The study applies DRASTIC model for Ahmedabad district in Gujarat, India. The model uses parameters like depth, recharge, aquifer, soil, topography, vadose zone and hydraulic conductivity, which depict the hydrogeology of the area. The research demonstrates that northern part of district with 46.4% of area is under low vulnerability, the central and southern parts with 48.4% of the area are under moderate vulnerability, while 5.2% of area in the south-east of district is under high vulnerability. It is observed from the study that lower vulnerability in northern part may be mostly due to the greater depth of vadose zone, deeper water tables and alluvial aquifer system with minor clay lenses. The moderate and high vulnerability in central and southern parts of study area may be due to lesser depth to water tables, smaller vadose zone depths, unconfined to semi-confined alluvial aquifer system and greater amount of recharge due to irrigation practices. Further, the map removal and single-parameter sensitivity analysis indicate that groundwater vulnerability index has higher influence of vadose zone, recharge, depth and aquifer parameters for the given study area. The research also contributes to validating the existence of higher concentrations of contaminants/indicators like electrical conductivity, chloride, total dissolved solids, sulphate, nitrate, calcium, sodium and magnesium with respect to groundwater vulnerability status in the study area. The contaminants/indicators exceeding the prescribed limits for drinking water as per Indian Standard 10500 (1991) were mostly found in areas under moderate and high vulnerability. Finally, the research successfully delineates the groundwater vulnerability in the region which can aid land-use policies and norms for activities related to recharge and seepage with respect to existing status of groundwater vulnerability and its quality.  相似文献   

17.
Groundwater is a very important natural resource in Khanyounis Governorate (the study area) for water supply and development. Historically, the exploitation of aquifers in Khanyounis Governorate has been undertaken without proper concern for environmental impact. In view of the importance of quality groundwater, it might be expected that aquifer protection to prevent groundwater quality deterioration would have received due attention. In the long term, however, protection of groundwater resources is of direct practical importance because, once pollution of groundwater has been allowed to occur, the scale and persistence of such pollution makes restoration technically difficult and costly. In order to maintain basin aquifer as a source of water for the area, it is necessary to find out, whether certain locations in this groundwater basin are susceptible to receive and transmit contamination. This study aims to: (1) assess the vulnerability of the aquifer to contamination in Khanyounis governorate, (2) find out the groundwater vulnerable zones to contamination in the aquifer of the study area, and (3) provide a spatial analysis of the parameters and conditions under which groundwater may become contaminate. To achieve that, DRASTIC model within geographic information system (GIS) environment was applied. The model uses seven environmental parameters: depth of water table, net recharge, aquifer media, soil media, topography, impact of vadose zone, and hydraulic conductivity to evaluate aquifer vulnerability. Based on this model and by using ArcGIS 9.3 software, an attempt was made to create vulnerability maps for the study area. According to the DRASTIC model index, the study has shown that in the western part of the study area the vulnerability to contamination ranges between high and very high due to the relatively shallow water table with moderate to high recharge potential, and permeable soils. To the east of the previous part and in the south-eastern part, vulnerability to contamination is moderate. In the central and the eastern part, vulnerability to contamination is low due to depth of water table. Vulnerability analysis of the DRASTIC Model indicates that the highest risk of contamination of groundwater in the study area originates from the soil media. The impact of vadose zone, depth to water level, and hydraulic conductivity imply moderate risks of contamination, while net recharge, aquifer media, and topography impose a low risk of aquifer contamination. The coefficient of variation indicates that a high contribution to the variation of vulnerability index is made by the topography. Moderate contribution is made by the depth to water level, and net recharge, while impact of vadose zone, hydraulic conductivity, soil media, and Aquifer media are the least variable parameters. The low variability of the parameters implies a smaller contribution to the variation of the vulnerability index across the study area. Moreover, the “effective” weights of the DRASTIC parameters obtained in this study exhibited some deviation from that of the “theoretical” weights. Soil media and the impact of vadose zone were the most effective parameters in the vulnerability assessment because their mean “effective” weights were higher than their respective “theoretical” weights. The depth of water table showed that both “effective” and “theoretical” weights were equal. The rest of the parameters exhibit lower “effective” weights compared with the “theoretical” weights. This explains the importance of soil media and vadose layers in the DRASTIC model. Therefore, it is important to get the accurate and detailed information of these two specific parameters. The GIS technique has provided an efficient environment for analysis and high capabilities of handling large spatial data. Considering these results, DRASTIC model highlights as a useful tool that can be used by national authorities and decision makers especially in the agricultural areas applying chemicals and pesticides which are most likely to contaminate groundwater resources.  相似文献   

18.
DRASTIC indexing and integrated electrical conductivity (IEC) modeling are approaches for assessing aquifer vulnerability to surface pollution. DRASTIC indexing is more common, but IEC modeling is faster and more cost-effective because it requires less data and fewer processing steps. This study aimed to compare DRASTIC indexing with IEC modeling to determine whether the latter is sufficient on its own. Both approaches are utilized to determine zones vulnerable to groundwater pollution in the Nile Delta. Hence, assessing the nature and degree of risk are important for realizing effective measures toward damage minimization. For DRASTIC indexing, hydrogeological factors such as depth to aquifer, recharge rate, aquifer media, soil permeability, topography, impact of the vadose zone, and hydraulic conductivity were combined in a geographical information system environment for assessing the aquifer vulnerability. For IEC modeling, DC resistivity data were collected from 36 surface sounding points to cover the entire area and used to estimate the IEC index. Additionally, the vulnerable zones identified by both approaches were tested using a local-scale resistivity survey in the form of 1D and 2D resistivity imaging to determine the permeable pathways in the vadose zone. A correlation of 0.82 was obtained between the DRASTIC indexing and IEC modeling results. For additional benefit, the obtained DRASTIC and IEC models were used together to develop a vulnerability map. This map showed a very high vulnerability zone, a high-vulnerability zone, and moderate- and low-vulnerability zones constituting 19.89, 41, 27, and 12%, respectively, of the study area. Identifying where groundwater is more vulnerable to pollution enables more effective protection and management of groundwater resources in vulnerable areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号