首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 410 毫秒
1.
湖泊沉积物—水界面铁—锰循环研究新进展   总被引:18,自引:2,他引:18  
通过云贵高原深水湖泊沉积物-水界面铁-锰循环研究,揭示了湖泊铁-锰循环不仅受氧化还原边界层化学界面的控制,而且受沉积物-水地质界面的制约;有机质生物氧化和硫酸盐还原构成界面铁-锰循环的重要机制并产生亚扩散层屏蔽效应;铁-锰循环伴随有微量金属元素地球化学形态的改变,从而影响其迁移行为;气候剧烈变化所中断的铁-锰循环,形成铁-锰富集层的古环境记录。  相似文献   

2.
吴丰昌  万国江 《矿物学报》1996,16(4):403-409
发生在沉积物-水界面的剧烈生物地球化学作用对沉积物和上覆水体具重要的环境效应,然而此方面研究很少,本文通过云贵高原四个湖泊湖水和孔隙水NH4和NO3剖面,沉积物柱芯不同结合态氮含量剖面分布,界面扩散通量,影响氮循环的因素及它们季节性变化规律等的对比研究,初步揭示了湖泊沉积物-水界面的氮循环及其环境效应。  相似文献   

3.
湖泊现代沉积作用核素示踪研究新进展   总被引:5,自引:0,他引:5  
宇宙线成因的短寿命核素^7Be在土粒中与有机质及铁-锰氧化物相结合;在表土层中随深度呈对数递降,显示出^7Be具土壤季节性侵蚀与湖泊沉积作用耦合关系的良好示踪价值。红枫湖沉积物中绝大多部分^137Cs处于固定态,揭示了其计年时标的可靠性;沉积物中1975年^137Cs次级蓄积峰的存在,增加了其计年价值。沉积物中^210Pb-^210Po的再迁移性受铁-锰界面循环的控制,并可能影响^10Pbex计年  相似文献   

4.
沉积物-水界面的生物地球化学作用   总被引:38,自引:0,他引:38  
沉积物-水界面是天然水体在物理、化学和生物特征等方面差异性最显著和负责水体和沉积物之间物质输送和交换的重要边界环境。对沉积物-水界面生物地球化学的定义、研究方法和它在水体微量物质循环中所起的作用、物质迁移方式、典型氧化还原敏感性元素转化反应(C、O、N)、界面扩散通量和表面扩散亚层的意义和估算等进行了讨论。  相似文献   

5.
沉积物-水界面的生物地球化学作用   总被引:18,自引:0,他引:18  
沉积物-水界面是天然水体在物理、化学和生物特征等方面差异性最显著和负责水体和沉积物之间物质输送和交换的重要边界环境。对沉积物-水界面生物地球化学的定义、研究方法和它在水体微量物质循环中所起的作用、物质迁移方式、典型氧化还原敏感性元素转化反应(C、O、N)、界面扩散通量和表面扩散亚层的意义和估算等进行了讨论。   相似文献   

6.
发生在沉积物-水界面的剧烈生物地球化学作用对沉积物和上覆水体具重要的环境效应,然而此方面研究很少。本文通过云贵高原四个湖泊湖水和孔隙水NH和NO剖面,沉积物柱芯不同结合态氮含量剖面分布,界面扩散通量,影响氮循环的因素及它们季节性变化规律等的对比研究,初步揭示了湖泊沉积物一水界面的氮循环及其环境效应。  相似文献   

7.
阿哈湖沉积物─水界面Fe-Mn循环的微生物影响分析万曦(中国科学院地球化学研究所,贵阳550002)关键词阿哈湖,沉积物,Fe-Mn循环,微生物微生物参与的湖泊沉积地球化学作用在沉积物-水界面物质循环中具有重要意义。本文通过贵阳阿哈湖沉积物-水界面F...  相似文献   

8.
硫酸盐还原菌是厌氧环境中参与砷形态转化的重要微生物种群,其介导的生物地球化学循环过程对铁氧化物表面吸附态砷迁移转化的影响亟待深入研究.选取江汉平原典型高砷含水层原位沉积物分离纯化出一株严格厌氧硫酸盐还原菌Desulfovibrio JH-S1,对其进行砷和铁还原能力鉴定,并通过模拟培养实验探究硫酸盐还原菌参与下的铁矿物相转化对吸附态砷迁移的影响.Desulfovibrio JH-S1具有Fe(III)还原能力,无硫和有硫体系中Fe(III)均能被还原,但在硫酸盐充足条件下铁还原量显著增加;该菌株不具备As(V)还原能力,但添加硫酸盐的培养体系中As(V)去除率可达96%以上.Desulfovibrio JH-S1能够还原硫酸盐从而促进载砷的水铁矿还原转化为纤铁矿,并导致吸附的砷释放.江汉平原高砷含水层土著硫酸盐还原菌兼具硫酸盐/铁还原功能,参与了高砷含水层系统中砷-铁-硫耦合循环,对高砷地下水的形成具有重要作用.   相似文献   

9.
铁是海洋沉积物中重要的氧化还原敏感性元素之一,是早期成岩过程中地球化学循环变化的重要动力因素。早期成岩过程中,表层沉积物中铁氧化物的赋存形态主要可分无定形(弱晶型)铁氧化物和晶型铁氧化物,且前者的含量主要决定着沉积物中铁氧化物的还原活性;铁氧化物可以通过与硫酸盐还原产生的硫化物反应进行还原,还能在铁还原菌的参与下被表层沉积物中的有机质还原,沉积物中活性铁含量、有机质含量、沉积速率、植物根系导氧作用及底栖生物的扰动均能对铁还原率造成影响。早期成岩过程中可以形成黄铁矿,形成机理主要有:1)沉积物中先前形成的硫复铁矿(Fe_3S_4)等前体物质通过加硫反应形成;2)硫过饱和的球粒胶体通过脱水、成核、结晶以及聚合作用而成单个草莓状黄铁矿或初始自行黄铁矿微晶成核、生长、聚集、固化的小型黄铁矿微球团并入更大的胶体状黄铁矿结核、草莓状黄铁矿分组,从而形成黄铁矿集合体;黄铁矿化度(DOP)可作为区分古海洋氧化还原环境的指标。对铁同位素的研究表明,异化还原作用(DIR)过程中产生的铁同位素值偏低;页岩中黄铁矿的铁同位素在2.3Ga附近发生的突变反映了第一次大气氧气增高事件。磁学参数对铁相变化具有良好的反应,环境磁学在早期成岩过程研究中的应用,有助于快速划分铁还原带、研究环境中重金属循环行为。  相似文献   

10.
红枫湖、百花湖沉积物中磷的存在形态研究   总被引:35,自引:1,他引:34  
湖泊沉积物中磷存在形态,是理解湖泊系统中磷的生物地球化学循环的重要方面,对研究湖泊富营养化等环境问题具有重要意义。本次工作中,采用连续提取化学分析技术,对红枫-百花尖沉积物中磷的存在形态及其剖面变化进行了研究,磷的存在形态包括:吸附态磷(Losely sorbedP)、铁结合态磷(Fe-bound P)、钙结合态磷(Ca-bound P)、矿物晶格中结合力强的残留态磷(Detrial-P)和有机态  相似文献   

11.
甲烷厌氧氧化作用(AOM)在调控全球甲烷收支平衡以及缓解因甲烷引起的温室效应等方面扮演着十分重要的角色,成为近些年来海洋生物地球化学领域的研究热点之一.一般而言,海洋沉积物孔隙水硫酸盐还原主要是通过2种反应途径来完成,即氧化有机质途径和AOM途径.长期以来,与有机质氧化途径相关的硫酸盐还原作用研究已有充分展示,而由AOM驱动的硫酸盐还原及其对自生硫化铁形成与埋藏的重要贡献却被严重低估.侧重从生物地球化学、同位素地球化学等角度,综述近些年来不同环境条件下海洋沉积物AOM作用发生的地球化学证据和AOM对沉积物孔隙水硫酸盐消耗比例的贡献大小及其调控因素.AOM过程产生的H2S会与沉积物中活性铁结合形成自生铁硫化物.与沉积物浅表层条件相比,AOM过程固定的自生铁硫化物不容易发生再氧化,更利于在沉积物中埋藏保存起来.AOM与海洋沉积物硫酸盐还原作用相偶联,由AOM驱动的硫酸盐还原过程对海底自生铁硫化物形成与埋藏的重要贡献不容忽视.该综述有助加深对海洋沉积物AOM作用的认识及其对硫循环的全面理解.  相似文献   

12.
硫酸盐作为电子受体,在有机质早期成岩作用中扮演着十分重要的角色,且较浅的硫酸盐甲烷作用带往往预示着下部有较大的甲烷逸散,或下部暗含天然气水合物藏(或天然气藏)。南海北部作为天然气水合物赋存区,了解赋存区沉积物中硫酸盐浓度变化对我们研究沉积物早期成岩作用和水合物的赋存是有重要帮助的。本文在分析了南海北部陆坡多个站位的沉积物柱状剖面中硫酸盐浓度变化特征之后,提出了南海北部硫酸盐变化模型及SMI界面深度计算方法。根据南海北部硫酸盐变化特征由浅至深可依次划分为有机质氧化驱动硫酸盐还原带、中层过渡带及下部甲烷厌氧氧化还原硫酸盐带。其中部分站位下部甲烷厌氧氧化硫酸盐还原带可分为上、下两层,两者硫酸盐还原速率以及硫酸盐梯度具有明显差异。有机质氧化带与甲烷厌氧氧化还原硫酸盐带在区内各处广泛发育,中层过渡带的存在与否取决于下部甲烷通量,在通量较大的地区中层过渡带消失。表层硫酸盐浓度增大是由有机硫氧化产生硫酸盐引起的。还应该注意的是,在计算SMI界面深度时,应剔除上部有机质氧化消耗硫酸盐的相关数据后进行计算,若下部甲烷厌氧氧化层根据硫酸盐还原速率可以划分成不同的两层,则应该使用下层数据进行拟合,计算SMI界面深度。  相似文献   

13.
SWB—1型便携式湖泊沉积物—界面水取样器的研制   总被引:35,自引:1,他引:34  
在湖泊环境的研究中,采到保持原状的沉积物-水界面样品是一项基本工作。根据国外有关资料,在前期研制的沉积物-水界面采样装置的基础上,研制成功了一种新型湖泊沉积物-水界面取样器。本取样器由部分组成,即连接构件、配重、悬挂密封机构和取样管。取样器是靠自重插入湖泊沉积层,悬挂密封机构将样品封闭于取样管内。本取样器能在深水湖泊中取到30 ̄50cm的湖底沉积物柱及10 ̄30cm的界面水柱。整个取样器重量轻(只  相似文献   

14.
潘峰  郭占荣  刘花台  王博  李志伟  庄振杰 《地球科学》2018,43(11):4109-4119
为了解潮间带微环境中磷、铁元素的分布和耦合规律及对磷释放的影响,借助薄膜扩散梯度技术(ZrO-Chelex DGT)原位高分辨率获取九龙江口红树林潮滩孔隙水剖面的溶解活性磷(DRP)、Fe2+浓度,并测定沉积物相应的理化参数.研究结果表明:(1)在表层孔隙水中,DRP、Fe2+浓度呈现显著的正相关性,证实了磷、铁元素的耦合关系以及沉积物铁氧化物对磷吸附/解吸附的控制作用;(2)在深部还原带,DRP浓度相对Fe2+浓度具有较大的波动,主要受到沉积物异质性以及红树植物吸收等的影响;(3)根据表层孔隙水中DRP的浓度梯度计算获得磷的分子扩散通量为0.000 64~0.006 00 μg·cm-2·d-1,结果远低于一般湖泊沉积物内源磷的扩散通量,原因是富铁且具较深氧化带的潮滩沉积物中的磷-铁耦合关系有效地抑制了磷的释放.   相似文献   

15.
锰的微生物地球化学   总被引:1,自引:0,他引:1  
锰的微生物地球化学郝瑞霞彭省临(中南工业大学地质系,长沙410083)关键词锰微生物地球化学循环锰的微生物地球化学是从70年代逐渐发展起来的。目前的研究涉及到湖泊、淡水热泉、海洋表层水、深海、沉积物等不同环境中锰与微生物的相互作用,以及锰结核、锰矿物...  相似文献   

16.
硫酸根离子(SO42-)是海洋沉积物孔隙水中的重要组分之一。硫酸盐还原菌利用孔隙水中SO42-作为氧化剂氧化沉积物中有机质或甲烷,造成孔隙水中SO42-离子浓度降代,同时使溶解在孔隙水中CO2的碳同位素组成降低。研究表明,在有天然气水合物出现的地区,强烈的甲烷缺氧氧化作用使孔隙水SO42-浓度急剧下降,表现为海底沉积物中硫酸盐-甲烷界面(SMI)较浅。如布莱克海台区,SMI界面为5.1~23.9m,界面附近深解于孔隙水中CO2的δ13C值低达-39%。笔者发现南海北京海区几个站位具有类似于布莱克海台区的较浅的SMI界面(7.5~17.2m)和极低的δ13C值(-29‰),结合其他地质、地球物理和地球化学证据,推测这些站位处可能赋存有天然气水合物,值得开展进一步详查工作。  相似文献   

17.
海底沉积物孔隙水钡循环对天然气渗漏的指示   总被引:1,自引:0,他引:1  
冷泉流体的渗漏活动强烈地影响着海底沉积物孔隙水钡循环。冷泉流体中的Ba2+ 向上扩散与孔隙水硫酸盐反应,在硫酸盐—碳氢化合物转化带(SHT)之上沉淀重晶石。随着沉积物的埋藏,先前沉淀的重晶石被埋藏于SHT之下的硫酸盐亏损带,将发生溶解,溶解的钡向上扩散,在SHT之上再次沉淀重晶石。当体系中向上扩散的Ba2+超过埋藏的重晶石中的钡时,在剖面上形成“钡锋”。向上渗漏的碳氢化合物(甲烷为主)通量控制了SHT的深度,二者之间存在很好的地球化学耦合关系,从而,可以用“钡锋”来评价天然气渗漏活动的特征。在总结和分析国际海底冷泉渗漏活动区沉积物孔隙水的甲烷和钡循环的研究进展基础上,综述了海底沉积物孔隙水钡循环对现在和过去天然气渗漏的指示,总结了渗漏成因重晶石的地质和地球化学特征。  相似文献   

18.
为探析长江口沉积物-水界面砷的迁移转化机制,本文分析了2019年夏季长江口4个站位上覆水和间隙水中总As浓度及形态的剖面变化特征,耦合氧化还原敏感元素(Fe、Mn和S)的剖面变化剖析了沉积物-水界面砷循环的Fe-Mn-S控制机制,同时结合砷相关功能基因探讨了沉积物-水界面砷迁移转化的微生物调控过程,估算了沉积物-水界面总As的扩散通量。结果表明,除A7-4站位外,长江口其他3个站位间隙水总As以As3+为主要存在形态,且总As浓度均在上覆水中为最低值(0.748~1.57 μg·L-1),而在间隙水中随着深度增加而逐渐增加并在6~9 cm深度达到峰值(7.14~26.9 μg·L-1)。间隙水总As及As3+浓度的剖面变化趋势与溶解态Fe2+、Mn2+相似,其均在中间层出现高值,说明沉积物Fe/Mn还原带砷的释放可能是随固相Fe(Ⅲ)或Mn(Ⅳ)的还原而转移到间隙水中的。氧化层和Fe/Mn还原带过渡区间隙水砷浓度与砷异化还原菌功能基因arrAarsC丰度存在对应关系(除A1-3站外),说明砷异化还原菌将溶解As5+或固相As5+还原为溶解As3+可能是该过渡层砷迁移转化的另一重要过程。硫酸盐还原带的间隙水总As和As3+浓度降低,但由于间隙水的低S2-浓度不利于砷硫化物生成,因此深层间隙水砷可能与铁硫矿物结合而被移除。底层环境氧化还原条件是影响沉积物-水界面砷迁移转化的重要因素,随底层水DO浓度的降低,砷迁移转化更倾向于微生物还原控制。长江口沉积物-水界面总As的扩散通量为1.18×10-7~2.07×10-7 μmol·cm-2·s-1,均表现为沉积物间隙水中总As向上覆水释放,即沉积物是研究区域水体总As的来源之一。  相似文献   

19.
海洋沉积物中由微生物硫酸盐还原作用(MSR)驱动的碳、硫耦合作用及甲烷消耗,是影响全球碳、硫循环和气候变化的关键生物地球化学过程。准确认识微生物硫酸盐还原代谢过程及其环境影响因子,是探究MSR驱动的碳、硫循环及生态环境效应的重要基础。沉积物孔隙水中硫酸盐的硫、氧同位素组成是揭示MSR过程及其驱动的硫循环的重要方法。本文从细胞内代谢途径和胞外硫循环过程角度,厘清影响孔隙水硫酸盐硫、氧同位素组成的硫的生物地球化学过程,阐述其在示踪有机质驱动和甲烷驱动的硫酸盐还原过程类型及“隐秘”硫循环的意义,为探究微生物硫酸盐还原作用在地球表层环境演化中的作用提供新启示。  相似文献   

20.
海洋天然气水合物系统硫同位素研究进展   总被引:2,自引:2,他引:0  
在海洋天然气水合物的地质系统中,甲烷的渗漏作用形成了独特的地球化学微环境。渗漏的甲烷在硫酸根-甲烷氧化还原界面与硫酸根之间发生厌氧氧化反应,同时硫酸盐发生还原反应,形成具有特殊同位素组成的自生碳酸盐、硫化物(AVS、黄铁矿等)和硫酸盐(重晶石、石膏)等。反应过程中硫酸盐还原菌的作用使得产物中硫的同位素发生了强烈分馏,具体表现为低δ34S值的硫化物矿物和高δ34S值的硫酸盐矿物的形成。沉积物中这种独特的硫同位素特征与海洋天然气水合物系统中独特地球化学微环境有关,是硫酸盐还原反应过程中细菌控制的硫酸盐分馏和厌氧细菌对硫的歧化反应(disproportionation)的共同作用结果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号