首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract: El Mueilha area consists of post-collision granitic rocks intruding Pan-African metasediments, metavolcanics and granodiorites. Tin mineralization in Gabal El Mueilha is either of vein type or disseminated in the greisenized and albitized parts of the granitic rocks. Cassiterite and wolframite-bearing quartz veins also characterize a small intrusion of muscovite granite at El Mueilha tin mine area. Detailed geochemical prospecting for the rare metals Sn, Nb, Be, Li, U, Th and some other trace elements was carried out at Gabal El Mueilha area using stream sediments survey. Sixty-seven stream sediment samples were collected from the main drainage patterns of the study area. Statistical parameters were calculated for the analyzed elements. The sought elements Sn, Nb, Be and Li have relatively high background values in the studied sediments. This may reflect the role of the pathfinder elements (Nb, Be and Li) during secondary dispersion survey for Sn mineralization.
Geochemical maps were constructed to delineate anomalous areas with abnormally high rare metal contents. The anomalous Sn, Nb and Be areas are mainly encountered in the main stream draining the mineralized zones of El Mueilha tin mine and near the SW albitized parts of the post-collision granite. Correlation coefficient matrices show significant positive relation between Sn and the rare metals group (Nb, Rb and Li) at 99 % significant level. R-mode factor analysis for the concerned elements yields five factor–model.  相似文献   

2.
Combined research in geochemistry and mineral chemistry of the hydrothermally altered W-Sn specialized granite of Regoufe and its derivatives in Portugal was undertaken to gain insight in the mineralogical changes associated with hydrothermal processes within a single granite cupola. Over 1000 unpolished rock sections were analyzed by automated X-ray fluorescence spectrometry (XRF). On the basis of the XRF data, a small number of these same sections was selected for investigation by electron probe microanalysis. The study focuses on fourteen elements of interest that are measurable with the chosen techniques. Major pervasive alteration within the Regoufe granite is virtually contemporaneous with mineralization in the form of Sn- or W-bearing quartz veins. Two phases of hydrothermal activity are discerned, characterized by different element associations. Fluids of the first phase were especially rich in Sn, Cs and F, whereas the second phase was marked by a W-Ta-Nb-Rb association and presumably carried less F. Phosphorus probably was an important fluid component in both phases. The fluids are inferred to have fractionated from a related granitic magma at depth.Tin, W, Nb and Ta are mainly found as substitutions or inclusions in biotite in the least altered part of the Regoufe granite. Tantalo-niobian rutile is an important control for the distribution of Nb. Tin occurs in rutile and rarely as cassiterite. Muscovitization caused leaching of Ti and Zr from the granite. Tin, supplied or mobilized by the hydrothermal fluids, behaves differently from W, Nb and Ta. In the most altered rocks, muscovite hosts significant amounts of Sn. Whereas Sn is still related to Cs and Ti, elements that probably represent altered biotite, W, Ta and Nb are related to newly formed Rb-rich muscovite. Columbitetantalite was detected embedded in late muscovite. In contrast to Sn, the fluid-supplied W was predominantly deposited as wolframite in quartz veins and the altered granite is not enriched in W compared to the relatively unaltered rocks. Strontium is preferentially hosted by K-feldspar in the least altered granite; Ca in this rock is still partly contained in albite. With increasing albitization and muscovitization, Sr and Ca were released and are partly bound in newly formed apatite. The primary magmatic apatites have near-ideal formula compositions, but mobilization of P during hydrothermal activity resulted in the formation of Mn-rich apatite in all parts of the granite, and Sr- and probably Li-rich varieties in the most altered rocks. Eosphorite, and scorodite as the oxidation product of arsenopyrite, were also formed as a result of P mobilization. In the least altered rocks, Cs is mainly contained in biotite. In the most altered granite and aplitic rocks, enrichment of Cs and Rb is evenly distributed over K-feldspar and micas. The processes that lead to increased Rb are partly independent of Cs enrichment, and apparently related to the W-Nb-Ta mineralization event, separate from the preceding Sn mineralization.  相似文献   

3.
湖南上堡矿区钨锡矿成矿条件及找矿前景分析   总被引:1,自引:0,他引:1  
上堡矿区出露地层有石炭系和二叠系,壶天群及栖霞组的灰岩、白云质灰岩化学性质活泼.W、Sn含量较高;区内的燕山早期黑云母花岗岩呈岩株或岩枝状产出,岩石具钠长石化和云英岩化,微量元素丰度值高;花岗岩体顶面的洼部构造很发育,规模大,是有利的成矿空间;围岩蚀变强烈,以矽卡岩化为主;W、Sn等元素的土壤异常围绕岩体分布,并且强度大,范围广;经钻探揭露,在接触带上有具工业意义的矽卡岩型钨锡矿体.通过分析,认为上堡矿区成矿地质条件优越,具有大型规模钨锡矿找矿潜力.  相似文献   

4.
《International Geology Review》2012,54(10):1144-1153
The geochemical features of hydrothermal-pneumatolytic rare element deposits are discussed on the basis of a natural connection between high temperature metasomatism phenomena and concentration processes of some rare elements. Two kinds of metasomatic processes are most interesting from the view-point of rare elements (albitization and greisenization). Li and Rb are concentrated in zinnwaldite-bearingalbitized granites and greisens. Nb, Ta (in columbite, pyrochlore, microlite, hatchettolite), Zr (in malacone zyrtolite), Be (beryl) are concentrated in albitized and greisenized granites. The beryllium deposits are closely connected with greisens of different composition, and quartz-greisen veins. The fluorite-bearing metasomatic rocks among carbonate rocks are characterizedby accumulations of Be (chrysoberyl, phenacite, taateite, sianhualite), Li (Li - margarite), Sn (cassiterite). The character of postmagmatic alterations of intrusive and wall rocks is a valuable indicator of the possibility of concentration of different rare elements.—Auth. English Summary.  相似文献   

5.
Vein-type W-Sn deposits occur both in and around the Regoufe granite. The muscovite-albite granite hosts several roof pendants of schist along its eastern and northern margins. Biotite, tourmaline and K-feldspar megacrysts are virtually absent from the roof zone of the granite but sulphides are abundant. These sulphides disappear through a transition zone and the granite becomes a tourmaline-bearing porphyritic two-mica granite. Fifty-five rock samples were collected within the granite resulting in a sample density of about 10 samples per km2. The analytical results show that the granite is extremely rich in Sn, W, Li and Cs, rich in P, Ta, Rb, F and U, about normal in Cu, Zn and Nb and low in Sr, Ti and Zr in comparison with the global averages for low-Ca granites. Factor analysis was applied to the data and the resulting three factor model could be correlated to the field relations. Factor 1 reflects greisenization and albitization processes. Factor 2 scores are high in the mineralized areas and factor 3 appears to be connected with the transition zone.  相似文献   

6.
he Sn-(Nb, Ta) mineralization of the Wamba field (central Nigeria) occurs in muscovite-quartz-microcline pegmatites, which are related to the late-orogenic Pan-African (f 550 Ma) "Older Granites". The emplacement of granites and pegmatites was controlled by late Pan-African shear tectonics. The granitoid magmatism was multiphase and has produced peraluminous biotite granite, biotite-muscovite granite, and muscovite granite plutons. Sodic metasomatism has altered highly evolved granite cupolas and many of the pegmatite dikes. The pegmatitic mineralization of predominantly cassiterite is closely associated with albitization. Chemical data of granites and granitic and pegmatitic muscovites show that Rb, Cs, Sn, Nb, and Ta are enriched during both magmatic and postmagmatic evolution, with highest contents of these elements in early muscovites of the albitized and mineralized pegmatites. Trace-element chemistry of the pegmatitic muscovites reveals a chemical zonation of the pegmatite field related to the late-orogenic shear system.  相似文献   

7.
We studied the geologic position, geodynamic setting, petrology, and geochemistry of veined lepidolitic granitoids from the Mungutiyn Tsagaan Durulj (MTD) occurrence (central Mongolia), found within the area of Mesozoic intraplate rare-metal magmatism. It has been established that their trace-element enrichment resulted from the intense effect of fluids rich in F, K, Li, Rb, Cs, Sn, Be, and W, which arrived from a deep magma chamber of rare-metal granitic melts, on leucogranites with originally weak rare-metal mineralization. Very high contents of F, rare alkali metals, Sn, Be, and W, characteristic of MTD granitoids, are close only to those in greisens of rare-metal granites and topaz-lepidolite-albitic pegmatites. The difference from the greisens in each case might be due to the features of the original rocks. The difference between the greisenized MTD leucogranites and the topaz-lepidolite-albitic pegmatites is more radical: Along with evident petrographic distinctions, it includes an evolution trend toward the albite norm decrease, not typical of Li–F igneous rocks; rock shearing and gneissosity, which must have contributed to their chemical transformation according to this trend; and stably lower contents of Nb and Ta (trace elements which usually accumulate during crystallization fractionation of F–Li granitic melts and are poorly soluble in magmatic fluids). The greisenized MTD granitoids are not only high-grade rare-metal ores of Li, Rb, F, and Sn but are also regarded as an indicator of a deep concealed pluton of rare-metal granites.  相似文献   

8.
Abstract: The northern part of Um Naggat granite massif (UNGM) has suffered extensive post-magmatic metasomatic reworking which results into the development of (Zr, Hf, Nb, Ta, U, Th, F)– and albite-enriched and greisenized apogranite body (UNAP) of 600 m thick, and more than 3 km in the strike length.
Albitization produced an enrichment in Zr (av. 2384 ppm), Hf (61), Nb (419), and U (43). The Th/U ratio ranges between 1. 33 and 1. 90. Extreme albitization (i. e. the albitite rock) is characterized by sharp decrease in the rare metals contents. However, extreme greisenization (i. e. endogreisen bodies) is characterized by a considerable enrichment in Zr (av. 5464 ppm), Hf (143), Nb (2329), Ta (152), U (66) and Th (178). The Th/U ratio ranges between 1. 57 and 3. 60. In contrast to extreme greisenization, it seems that extreme albitization does not apparently change the fluid pH and therefore poor amounts of rare metals are localized in the albitites.
It is suggested that the presence of Na+, H+ and F- in the ore fluids was essential to stablize complexes of Zr, Hf, Nb, Ta, U, Th, and HREE during extraction and transportation. In contrast, contemporaneous decrease of temperature and increasing pH due to decreasing pressure are considered the essential factors for localization of disseminated mineralization of Zr and Nb in the apical parts of the UNAP. The enhanced uranium content in the alteration facies of UNAP coupled with the absence of significant uranium mineralization may indicate the metalliferous rather than mineralized nature for the UNAP. The high uranium contents are stabilized in refractory accessory minerals. However, with repect to Zr and Nb, the UNAP especially the albitized and greisen facies, can be categorized as a mineralized productive granite.  相似文献   

9.
The tin-greisens of the Rondonia Tin Province, Brazil, are related with the intrusion of a 995−975 Ma evolved rapakivi granite suite interpreted as post-collisional with respect to the Grenvillian orogeny during assembly of Rodinia. Lithium-iron mica (‘zinnwaldite’) is the main mineral in late- to post-magmatic and ore stages of such greisens, and has the potential of being a recorder of the mineralization processes. We provide bulk rock geochemistry of granite, greisen, and greisenized granite, coupled with in-situ major and trace element analyses in mica. Trace element and Li contents in mica were assessed via LA-ICP-MS analysis to avoid interference from ore-mineral inclusions. There is a large-scale zoning (hundreds of meters) of the composition of magmatic mica within the massif. Within 200 m of greisen zones, the mica composition in granite becomes similar to hydrothermal greisen mica, i.e. mica composition is suggested as a proximity indicator for greisen. Mica records the evolution of the system from magmatic to hydrothermal. Early-magmatic mica is Li, Rb and F poor and Mg, Ti and Fe rich, as opposed to greisen mica. Rare metals (e.g. Sn, Ta, W) display complex behavior, as their content in mica increases from magmatic to transitional stages, but decreases from transitional to ore (greisen and vein) stages. This can be explained by a complex interaction between enrichment of metals in the fluid, crystallization order of HFSE-bearing minerals, a decrease in the acceptance of HFSE in mica due to Ti depletion, and a change in the system from melt-dominated to fluid-dominated. Depletion of rare metals in mica can be an important factor for mineralization, since binding these metals to silicates reduces the amount of ore minerals. In granite, up to 86 % of Sn is bound to mica, while in greisen, up to 95 % of it is available to form cassiterite. Niobium behaves differently than other rare metals, likely due to its very high initial partition coefficient in mica and its lower solubility in fluids when compared to Sn and Ta. As such, changes in the Nb/Sn ratio in mica can be used as a proxy for the rock/fluid ratios. Mica pseudomorphs after feldspar in greisenized granite have anomalously high Sr contents inherited from their albite precursor.  相似文献   

10.
白石头泉含黄玉的天河石花岗岩体Rb-Sr等时线年龄209.6±9.6 Ma,从下至上可分为5个连续过渡的岩相带,即淡色花岗岩(a带),含天河石花岗岩(b带),天河石花岗岩(c带),含黄玉天河石花岗岩(d带)以及黄玉钠长花岗岩(e带)。岩体的岩石地球化学特征是高F(> 2 %)、高 Rb (500×10-6~1 087×10-6),低 P2O5 (≤0.06%),Na2O>K2O,弱过铝 (A/NKC=1.00~1.11)、翼型稀土元素配分曲线 (ΣREE=28.6×10-6~231.9×10-6)、低(La/Lu)N值 (0.11~0.68)、强烈Eu负异常(Eu/Eu* = 0.0005~0.0110)、Nd同位素富集(εNd (t )= -4.4~-4.9)。该岩体的岩浆是中地壳云母片麻岩部分熔融的产物。从a带到e带的地球化学变化是:(1)F,A2O3和Na2O含量逐渐增加,而SiO2,(Fe2O3+FeO+MgO+MnO)、FeO和K2O含量逐渐减少,在标准矿物的Qz-Ab-Or图上总体向Ab角顶移动;(2)总体而言,Cr,Ni,Co,V,W,Nb,Zr,U,Th和Y含量逐渐减少,而F,Li,Rb,Hf,Ta,Sn,Sc,Ga和Zn含量逐渐增加,但d带到e带间存在Li,Rb,Sn,Sc和Zn含量的突降;(3)K/Rb,Al/Ga,Nb/Ta和Zr/Hf值下降, 但K/Cs,Th/U,(La/Lu)N值上升;(4)全岩的δ18O 值从a带的9.25 ‰~9.75 ‰降低到e带的7.32 ‰,d带与e带间存在2.1‰的δ18O值突降。岩浆从a带到e带的垂向分带是分离结晶和流体输运的共同结果。岩体的d带与e带存在明显的成分间断。在矿物成分上表现为黄玉、钠长石和白云母的剧增,钾长石和天河石的剧减。在主量元素上表现为 Na2O和CaO含量的剧增,SiO2和K2O含量的剧减。在微量元素上表现为F,Ga,Sr和Ba含量的剧增,Li,Rb,Sc,Zn和Sn含量的剧减。在稀土元素上,Eu/Eu*和(La/Lu)N值增加,而ΣREE值降低。在氧同位素特征上,δ18O值显著降低。这种间断不仅受分离结晶和流体输运的制约,也与天水加入、围岩混染和亚固相线淋滤有关。  相似文献   

11.
四川平武稀有金属花岗岩与绿柱石的成矿属性   总被引:8,自引:1,他引:8  
通过对四川平武稀有金属花岗岩体的岩石地球化学特征的研究,阐述该区花岗岩与绿柱石的成矿关系。研究表明:平武花岗岩体造岩矿物组合为石英、钠长石、钾长石和白云母;岩石化学成分铝过饱和、富钠、富碱性,稀土元素含量很低,富含Be,W,Sn,Li,Ta,Rb等稀有元素;属花岗岩浆高度分异演化晚期阶段的产物;由岩浆期后的云英岩化形成气成-热液型绿柱石宝石矿床。  相似文献   

12.
New trace element data were obtained by ICP-MS for 58 samples representing eight intrusive phases of the Raumid granite Pluton. All of the rocks, except for one sample that was deliberately taken from a greisenized zone, were not affected by postmagmatic fluid alteration. The sequential accumulation of incompatible trace elements (Rb, Ta, Nb, Pb, U, and others) in the Raumid Pluton from the early to late phases coupled with a decrease in incompatible element contents (Sr, Eu, Ba, and others) indicates a genetic link between the granites of all phases via fractional crystallization of a granite melt. The REE distribution patterns of final granite phases are typical of rare-metal granites. The Ta content in the granites of phase 8 is only slightly lower than that of typical rare-metal granites. Greisenization disturbed the systematic variations in trace element distribution formed during the magmatic stage. The ranges of trace element contents (Rb, Sr, Ta, Nb, and others) and ratios (Rb/Sr, La/Lu, Eu/Eu*, and others) in the Raumid granite overlap almost entirely the ranges of granitic rocks of various compositions, from the least differentiated with ordinary trace element contents to rare-metal granites. This indicates that the geochemical signature of rare-metal granites can develop at the magmatic stage owing to fractional crystallization of melts, which is the case for the melt of the Raumid granite.  相似文献   

13.
新疆准噶尔盆地东部卡拉麦里地区发育我国典型的A型花岗岩型锡矿.通过对该区卡姆斯特和干梁子两个锡矿4个矿化蚀变带的岩相学及地球化学研究,发现矿体和致矿岩体是同源岩浆演化的结果,矿体是岩浆分异演化末期向流体演化过程中形成的.矿床的蚀变分带模式可分为两种:(1)(红色)细粒黑云母花岗岩→云英岩化细粒花岗岩→含锡石英脉;(2)细粒黑云母花岗岩→含锡云英岩→含锡石英脉.其蚀变带中岩石的地球化学组分总体迁移规律为:SiO2迁入,Na2O、K2O迁出,Fe2O3总体表现为迁入,Th/U值不断降低,表明硅化和碱交代作用贯穿整个成矿过程,成矿环境由碱性向酸性变化,并伴随氧逸度的升高.F、Cl、W、Cu、Bi、In、Pb、Rb、Nb、Ta等元素与成矿元素Sn的迁移、富集和沉淀密切相关,其中F和Cl是迁移过程中最活跃的组分,是Sn元素最大的"搬运工",Sn元素的富集与W、Cu、Bi、In等元素迁移呈正相关,反映流体作用与Sn成矿密切相伴,而与Pb、Rb、Nb、Ta等元素的迁移呈负相关,反映致矿岩体自身元素的稀释和带出,Sn的富集和成矿是在岩浆向流体演化过程中完成的.   相似文献   

14.
This study is concerned with formation of minerals containing Li, Be, Cb, Ta, W, Bi, and other elements. The distribution of 35 accessory minerals was examined in biotite granite massifs occupying an area of 10 km2 . These minerals formed during the late magmatic stage and mainly during the subsequent metasomatic processes, such as rnuscovitization, early albitization, greisenization, late albitization, and microclinization. Tantalum and columbium mineralization is associated with rocks intensely altered by the processes of alkaline metasomatism and reflects differentiation of rare earth's mineralization in marginal granite massifs. Minerals containing Be, W, Bi, Sn, and Mo were deposited during the acidic stage of metasomatism. The subsequent alkaline stage of metasomatism resulted in leaching of these elements and their redeposition outside the massif. The paper is of interest as a guide in prospecting for tantalum and columbium in granitic intrusions.--E. A. Alexandrov.  相似文献   

15.
朱鑫祥  刘琰 《岩矿测试》2021,(2):296-305
雪宝顶矿床位于四川省的松潘甘孜造山带中,以出产大颗粒含W-Sn-Be-F-P的矿物而闻名,前人对该矿床已经开展了大量的研究,但缺乏对粗粒矿物的主次痕量元素研究。本次研究采用X射线荧光光谱(XRF)、电子探针(EMPA)和电感耦合等离子体质谱(ICP-MS)技术对矿床中各矿物的主次痕量元素进行测试分析。结果显示,雪宝顶矿床中的绿柱石、白钨矿、锡石、白云母、萤石、磷灰石、电气石,除富含W、Sn、Be、Na、K、Ca等主要成矿元素外,还富集Li、Rb、Cs等碱金属元素和F、B、P等挥发份。其中,雪宝顶绿柱石中富含Li(3484~4243μg/g)、Rb(39.3~71.1μg/g)、Cs(2955~3526μg/g);白云母中Li、Rb和Cs元素含量分别高达4243μg/g、72.3μg/g和3526μg/g;磷灰石中除主量元素P外,F(4.48%~5.21%)含量相对较高;电气石中的B含量高达30990~32880μg/g。雪宝顶矿床中的花岗岩岩体W、Sn、Be、Li、Rb、Cs、F、B、P等元素相对富集,但CaO含量(0.46%~0.82%)相对较低。其中Li、F、B、P等元素对成矿元素在成矿流体内的富集起到了极大的促进作用。矿区内大理岩是一种富Ca的方解石大理岩,为成矿提供了大量的Ca元素,有利于粗粒矿物的大规模沉淀。因此,粗粒矿物中的W、Sn、Be、Li、Rb、Cs、F、B、P等元素主要来源于原始岩浆流体,大理岩地层为粗粒矿物提供了大量的Ca元素。  相似文献   

16.
Most rare-metal granites in South China host major W deposits with few or without Ta–Nb mineralization. However, the Yashan granitic pluton, located in the Yichun area of western Jiangxi province, South China, hosts a major Nb–Ta deposit with minor W mineralization. It is thus important for understanding the diversity of W and Nb–Ta mineralization associated with rare-metal granites. The Yashan pluton consists of multi-stage intrusive units, including the protolithionite (-muscovite) granite, Li-mica granite and topaz–lepidolite granite from the early to late stages. Bulk-rock REE contents and La/Yb ratios decrease from protolithionite granite to Li-mica granite to topaz–lepidolite granite, suggesting the dominant plagioclase fractionation. This variation, together with increasing Li, Rb, Cs and Ta but decreasing Nb/Ta and Zr/Hf ratios, is consistent with the magmatic evolution. In the Yashan pluton, micas are protolithionite, muscovite, Li-mica and lepidolite, and zircons show wide concentration ranges of ZrO2, HfO2, UO2, ThO2, Y2O3 and P2O5. Compositional variations of minerals, such as increasing F, Rb and Li in mica and increasing Hf, U and P in zircon are also in concert with the magmatic evolution from protolithionite granite to Li-mica granite to topaz–lepidolite granite. The most evolved topaz–lepidolite granite has the highest bulk-rock Li, Rb, Cs, F and P contents, consistent with the highest contents of these elements and the lowest Nb/Ta ratio in mica and the lowest Zr/Hf ratio in zircon. Ta–Nb enrichment was closely related to the enrichment of volatile elements (i.e. Li, F and P) in the melt during magmatic evolution, which raised the proportion of non-bridging oxygens (NBOs) in the melt. The rims of zoned micas in the Li-mica and topaz–lepidolite granites contain lower Rb, Cs, Nb and Ta and much lower F and W than the cores and/or mantles, indicating an exotic aqueous fluid during hydrothermal evolution. Some columbite-group minerals may have formed from exotic aqueous fluids which were originally depleted in F, Rb, Cs, Nb, Ta and W, but such fluids were not responsible for Ta–Nb enrichment in the Yashan granite. The interaction of hydrothermal fluids with previously existing micas may have played an important role in leaching, concentrating and transporting W, Fe and Ti. Ta–Nb enrichment was associated with highly evolved magmas, but W mineralization is closely related to hydrothermal fluid. Thus these magmatic and hydrothermal processes explain the diversity of W and Ta–Nb mineralizations in the rare-metal granites.  相似文献   

17.
Biotites from unaltered Sn granites in southeastern Australia are highly ferroan, Fe/(Fe+Mg+Mn) >0.75, whereas biotites from barren granites are less Ferich, Fe/(Fe+Mg+Mn)<0.65. Similar distinctions between Sn-specialized and barren granites can be observed in the other phyllosilicates, especially chlorite. Biotites and muscovites from Sn granites have greater Be, Cs, (F), Li, Mo, Rb, Sc, Sn, Tl, (Y) and Zn and lesser Ba abundances than corresponding micas from barren granites in the same district. Alteration of barren granites also results in similar enrichments in micas. Of these elements, Sn and Zn, because of their abundance and retention during degradation of biotite to chlorite, are the best trace element discriminants between barren granites and Sn granites/altered granites, with the Sn content of phyllosilicates being a better indicator than Zn. Rutile inclusions within phyllosilicates from unaltered Sn granites have Nb2O5 contents up to 26%. The Ta content tends to increase with Nb content but especially high Ta contents occur in the rutile inclusions of granites that give rise to pegmatitic deposits. The rutile inclusions in Sn granites may also have substantial Sn and W contents. The rutiles of barren granites have low Nb, Ta, Sn and W contents but Sn and W increase with alteration. Together, the ratio Fe/(Fe+Mg+Mn) and Sn contents in phyllosilicates and rutile compositions can be used to identify the Sn mineralization potential of a granite.  相似文献   

18.
The Tongolo Anorogenic Complex consists of peraluminous biotite granites and peralkaline riebeckite granites in which mineralization is spatially associated with the peraluminous biotite granites. Metallization is dominated by Nb-Sn and Sn-W types. Geochemical analyses of fresh bedrock samples indicate that the Tongolo biotite granites are characterized by enhanced values of a suite of trace elements (Sn, Nb, W, Zn, Rb, Li, F, Th, Y, U) which readily identify them as “specialized” granites. These geochemical data are also examined by R-mode factor analysis with the primary objective of isolating the significant factors accounting for the sample composition as derived from mineralization, alteration and lithology. The resulting orthogonal varimax solution yields a three-factor model that accounts for 79.7% of the total variance. These granite series are marked by what is interpreted as the “lithophile factor” (heavily loaded by Li, Rb, F, Th, Ga, Y, U) dominated by magmatic processes and metallization factors (Nb, Zr, Ga, U, Zn, Li and Sn, W, Rb, F, Th) which are dominated by postmagmatic processes. The two dominant types of mineralization (Nb-Sn and Sn-W), although characterized by the same pattern of trace-element enrichments, can be discriminated on the basis of Rb/Zr and Sn-Li-F relationships.  相似文献   

19.
丹池成矿带是我国重要锡多金属成矿带,过去对丹池成矿带成岩成矿研究主要集中在大厂矿田及五圩矿田,而对丹池成矿带北部的芒场矿田岩浆作用时代、源区特征及其成矿性缺少分析。芒场矿田岩浆活动强烈,发育隐伏斑状花岗岩及有关的花岗斑岩脉和隐伏细粒花岗斑岩及有关的白云母花岗斑岩脉。本文分析花岗斑岩脉U-Pb年龄及花岗斑岩脉和白云母花岗斑岩脉主、微量元素组成,以探讨岩浆活动时代、岩浆源区特征及其成矿潜力。芒场矿田花岗斑岩脉锆石U-Pb年龄为89.1±0.9Ma (MSWD=0.9),和丹池成矿带内大厂矿田岩浆活动时代相近,表明丹池成矿带岩浆活动时代都发生于90Ma左右。白云母花岗斑岩脉具高A/CNK比值(2.69~2.88),含高铝硅酸盐矿物白云母及在Th-Rb图上沿S型花岗岩趋势线分布,和大厂矿田S型黑云母花岗岩的特征基本一致,表明其主要为S型花岗岩。花岗斑岩脉形成时代晚于白云母花岗斑岩脉,但其具有更低的SiO_2含量和更高的MgO、Fe_2O_3~T、CaO和TiO_2含量,且在SiO_2与TiO_2、Fe_2O_3~T、Al_2O_3和P_2O_5关系图中分布于不同区域,没有线性变化关系,显示两者不是同一岩浆结晶分异演化形成的,而为不同沉积变质岩部分熔融形成的。白云母花岗斑岩脉富Al_2O_3、K_2O、Rb、Cs、Sn、W、Nb和Ta,在Rb/Ba-Rb/Sr图上位于富粘土源区,为强风化作用形成的富粘土质富稀有金属源区部分熔融形成的产物。华南西部基底发育经强风化作用形成的富粘土质富稀有金属元素沉积变质源区,为华南西南缘大规模锡矿床的形成提供了物质基础。  相似文献   

20.
The G. Abu Garadi area is covered mainly by metasediments, alkali feldspar granites and stream sediments. The alkali feldspar granite is traversed by a major strike-slip fault trending in an N-S direction as well as two subordinate sets of faults trending NW to WNW for the first one and NE for the second one. These faults represent the shear zones affected by magmatic (syngenetic) as well as hydrothermal (epigenetic) activities causing alteration of the granitic rocks. The most common alteration features are albitization, greisenization and koalinitization. The mass balance calculations of the studied altered samples show enrichments in Zr, Y, Ni, U, Th and Ga and depletions in Zn, Sr, Nb, Ba, Pb, Cu and V. Only the greisenized samples exhibit a significant enrichment in Nb, ∑REE budget and pronounced lanthanide tetrad effect (M-type), especially TE1,4, while weakly expressed tetrad effects are for the other albitized and koalinitized samples. Mineralogically, the common accessory minerals in the altered samples include samarskite-(Y), betafite, uranothorite, zircon, fluorite and cassiterite. The greisenized granites contain high eU and eTh than the other altered types, where they are characterized by an assemblage of the radioactive minerals; samarskite-(Y), betafite, uranothorite in addition to zircon. The inter-element relationships between U and Th and also their ratios illustrate that the radioelement distribution in these granites is mainly governed by magmatic processes, in addition to post-magmatic ones. The distribution of chemical elements and the fractionation of some isovalents within the shear zone are largely controlled by the newly formed mineral phases. With respect to uranium mobilization, uranium migrated from the host alkali feldspar granites of G. Abu Garadi, while the shear zones acted as traps for the migrated uranium. Moreover, U migrated in the shear zone during greisenization and albitization, and migrated out during koalinitization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号