首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
A new tracer experiment (referred to as MADE‐5) was conducted at the well‐known Macrodispersion Experiment (MADE) site to investigate the influence of small‐scale mass‐transfer and dispersion processes on well‐to‐well transport. The test was performed under dipole forced‐gradient flow conditions and concentrations were monitored in an extraction well and in two multilevel sampler (MLS) wells located at 6, 1.5, and 3.75 m from the source, respectively. The shape of the breakthrough curve (BTC) measured at the extraction well is strongly asymmetric showing a rapidly arriving peak and an extensive late‐time tail. The BTCs measured at seven different depths in the two MLSs are radically different from one another in terms of shape, arrival times, and magnitude of the concentration peaks. All of these characteristics indicate the presence of a complex network of preferential flow pathways controlling solute transport at the test site. Field‐experimental data were also used to evaluate two transport models: a stochastic advection‐dispersion model (ADM) based on conditional multivariate Gaussian realizations of the hydraulic conductivity field and a dual‐domain single‐rate (DDSR) mass‐transfer model based on a deterministic reconstruction of the aquifer heterogeneity. Unlike the stochastic ADM realizations, the DDSR accurately predicted the magnitude of the concentration peak and its arrival time (within a 1.5% error). For the multilevel BTCs between the injection and extraction wells, neither model reproduced the observed values, indicating that a high‐resolution characterization of the aquifer heterogeneity at the subdecimeter scale would be needed to fully capture 3D transport details.  相似文献   

2.
Study of the mobility of contaminants in an aquifer is an important issue for the proper remediation of contaminated groundwater. Determination of associated solute transport parameters therefore is essential for investigation of the extent to which groundwater can be contaminated. This study aimed at determining solute transport parameters for an unconfined sandy aquifer at a laboratory scale through various tracer tests using a conservative solute as a tracer. Tracer tests consisted of both well‐tracer tests (single and double wells) and an aquifer tracer test using a plume‐capturing device such as time domain reflectometry (TDR). The results showed that longitudinal dispersivities estimated from the single and double well‐tracer tests were 2·2 cm and 13·5 cm for a travel distance of 9·3 cm and 13·5 cm from the injection point respectively. These results agreed reasonably well with the results of the aquifer tracer test. The solute transport parameters obtained at multiple points in the aquifer through the aquifer tracer test revealed that the dispersivity length was proportional to the travel distance by a factor of 0·3, which was moderately higher than the value of 0·1 given in the literature. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

3.
When the purpose of aquifer testing is to yield data for modeling aqueous mass transport, pumping tests and gradient measurement can only partially satisfy characterization requirements. Effective porosity, ground water flow velocity, and the vertical distribution of hydraulic conductivity within the aquifer are left as unknowns. Single well tracer methods, when added to the testing program, can be used to estimate these parameters. A drift, and pumpback test yields porosity and velocity, and point-dilution testing yields depth-discrete hydraulic information, A single emplacement of tracer into a test well is sufficient to conduct both tests. The tracer tests are facilitated by a simple method for injecting and evenly distributing the tracer solution into a wellbore, and by new ion-selective electrode instrumentation, specifically designed for submersible service, for monitoring the concentration of tracers such as bromide.  相似文献   

4.
Illman WA  Berg SJ  Yeh TC 《Ground water》2012,50(3):421-431
The main purpose of this paper was to compare three approaches for predicting solute transport. The approaches include: (1) an effective parameter/macrodispersion approach (Gelhar and Axness 1983); (2) a heterogeneous approach using ordinary kriging based on core samples; and (3) a heterogeneous approach based on hydraulic tomography. We conducted our comparison in a heterogeneous sandbox aquifer. The aquifer was first characterized by taking 48 core samples to obtain local-scale hydraulic conductivity (K). The spatial statistics of these K values were then used to calculate the effective parameters. These K values and their statistics were also used for kriging to obtain a heterogeneous K field. In parallel, we performed a hydraulic tomography survey using hydraulic tests conducted in a dipole fashion with the drawdown data analyzed using the sequential successive linear estimator code (Yeh and Liu 2000) to obtain a K distribution (or K tomogram). The effective parameters and the heterogeneous K fields from kriging and hydraulic tomography were used in forward simulations of a dipole conservative tracer test. The simulated and observed breakthrough curves and their temporal moments were compared. Results show an improvement in predictions of drawdown behavior and tracer transport when the K tomogram from hydraulic tomography was used. This suggests that the high-resolution prediction of solute transport is possible without collecting a large number of small-scale samples to estimate flow and transport properties that are costly to obtain at the field scale.  相似文献   

5.
The coupled flow-mass transport inverse problem is formulated using the maximum likelihood estimation concept. An evolutionary computational algorithm, the genetic algorithm, is applied to search for a global or near-global solution. The resulting inverse model allows for flow and transport parameter estimation, based on inversion of spatial and temporal distributions of head and concentration measurements. Numerical experiments using a subset of the three-dimensional tracer tests conducted at the Columbus, Mississippi site are presented to test the model's ability to identify a wide range of parameters and parametrization schemes. The results indicate that the model can be applied to identify zoned parameters of hydraulic conductivity, geostatistical parameters of the hydraulic conductivity field, angle of hydraulic conductivity anisotropy, solute hydrodynamic dispersivity, and sorption parameters. The identification criterion, or objective function residual, is shown to decrease significantly as the complexity of the hydraulic conductivity parametrization is increased. Predictive modeling using the estimated parameters indicated that the geostatistical hydraulic conductivity distribution scheme produced good agreement between simulated and observed heads and concentrations. The genetic algorithm, while providing apparently robust solutions, is found to be considerably less efficient computationally than a quasi-Newton algorithm.  相似文献   

6.
A main purpose of groundwater inverse modeling lies in estimating the hydraulic conductivity field of an aquifer. Traditionally, hydraulic head measurements, possibly obtained in tomographic setups, are used as data. Because the groundwater flow equation is diffusive, many pumping and observation wells would be necessary to obtain a high resolution of hydraulic conductivity, which is typically not possible. We suggest performing heat tracer tests using the same already installed pumping wells and thermometers in observation planes to amend the hydraulic head data set by the arrival times of the heat signals. For each tomographic combinations of wells, we recommend installing an outer pair of pumping wells, generating artificial ambient flow, and an inner well pair in which the tests are performed. We jointly invert heads and thermal arrival times in 3-D by the quasi-linear geostatistical approach using an efficiently parallelized code running on a mid-range cluster. In the present study, we evaluate the value of heat tracer versus head data in a synthetic test case, where the estimated fields can be compared to the synthetic truth. Because the sensitivity patterns of the thermal arrival times differ from those of head measurements, the resolved variance in the estimated field is 6 to 10 times higher in the joint inversion in comparison to inverting head data only. Also, in contrast to head measurements, reversing the flow field and repeating the heat-tracer test improves the estimate in terms of reducing the estimation variance of the estimate. Based on the synthetic test case, we recommend performing the tests in four principal directions, requiring in total eight pumping wells and four intersecting observation planes for heads and temperature in each direction.  相似文献   

7.
8.
To better understand the groundwater resources of southern Nye County, Nevada, a multipart distributed thermal perturbation sensing (DTPS) test was performed on a complex of three wells. These wells penetrate an alluvial aquifer that drains the Nevada National Security Site, and characterizing the hydraulic properties and flow paths of the regional groundwater flow system has proven very difficult. The well complex comprised one pumping well and two observation wells, both located 18 m from the pumping well. Using fiber‐optic cables and line heaters, DTPS tests were performed under both stressed and unstressed conditions. Each test injects heat into the water column over a period of one to two days, and observes the rising temperature during heat injection and falling temperatures after heating ceases. Aquifer thermal properties are inferred from temperature patterns in the cased section of the wells, and fluxes through the 30‐m screened section are estimated based on a model that incorporates conductive and advective heat fluxes. Vertical variations in flux are examined on a scale of tens of cm. The actively flowing zones of the aquifer change between the stressed and unstressed test, and anisotropy in the aquifer permeability is apparent from the changing fluxes between tests. The fluxes inferred from the DTPS tests are compared to solute tracer tests previously performed on the same site. The DTPS‐based fluxes are consistent with the fastest solute transport observed in the tracer test, but appear to overestimate the mean flux through the system.  相似文献   

9.
Forced gradient tracer tests between two boreholes can be used to study contaminant transport processes at the small field scale or investigate the transport properties of an aquifer. Full depth tests, in which tracer samples are collected just from the discharge of the abstraction borehole, often give rise to breakthrough curves with multiple peaks that are usually attributed to different flow paths through the aquifer that can rarely be identified from the test results alone. Tests in selected levels of the aquifer, such as those between packer‐isolated sections of the boreholes, are time consuming, expensive; and the identification of major transport pathways is not guaranteed. We present a method for simultaneously conducting multiple tracer tests covering the full depth of the boreholes, in which tracer sampling and monitoring is carried out by a novel multilevel sampling system allowing high frequency and cumulative sampling options. The method is applied to a tracer test using fluorescein conducted in the multilayered sandstone aquifer beneath the city of Birmingham, UK, producing six well‐defined tracer breakthrough curves.  相似文献   

10.
Depth-discrete aquifer in formal ion was obtained using recently developed adaptations and improvements to conventional characterization techniques. These improvements included running neutron porosity and hulk density geophysical logging tools through a cased hole, performing an enhanced point-dilution tracer test for monitoring tracer concentration as a function of Lime and depth, and using pressure derivatives for diagnostic and quantitative analysis of constant rate discharge lest data. Data results from the use of these techniques were used to develop a conceptual model of a heterogeneous aquifer. Depth-discrete aquifer information was required to effectively design field-scale deployment and monitoring of an in situ bioremediation technology.
Geophysical logging and point-dilution tracer test results provided the relative distribution of porosity and horizontal hydraulic conductivity, respectively, with depth and correlated well. Hydraulic pumping tests were conducted to estimate mean values for transmissivity and effective hydraulic conductivity, Tracer lest and geophysical logging results indicated that ground water flow was predominant in the upper approximate 10 feet of the aquifer investigated. These results were used to delineate a more representative interval thickness for estimating effective hydraulic conductivity. Hydraulic conductivity, calculated using this representative interval, was estimated lo be 73 ft/d, approximately three limes higher than that calculated using the full length of the screened test interval.  相似文献   

11.
A generalized, efficient, and practical approach based on the travel‐time modeling framework is developed to estimate in situ reaction rate coefficients for groundwater remediation in heterogeneous aquifers. The required information for this approach can be obtained by conducting tracer tests with injection of a mixture of conservative and reactive tracers and measurements of both breakthrough curves (BTCs). The conservative BTC is used to infer the travel‐time distribution from the injection point to the observation point. For advection‐dominant reactive transport with well‐mixed reactive species and a constant travel‐time distribution, the reactive BTC is obtained by integrating the solutions to advective‐reactive transport over the entire travel‐time distribution, and then is used in optimization to determine the in situ reaction rate coefficients. By directly working on the conservative and reactive BTCs, this approach avoids costly aquifer characterization and improves the estimation for transport in heterogeneous aquifers which may not be sufficiently described by traditional mechanistic transport models with constant transport parameters. Simplified schemes are proposed for reactive transport with zero‐, first‐, nth‐order, and Michaelis‐Menten reactions. The proposed approach is validated by a reactive transport case in a two‐dimensional synthetic heterogeneous aquifer and a field‐scale bioremediation experiment conducted at Oak Ridge, Tennessee. The field application indicates that ethanol degradation for U(VI)‐bioremediation is better approximated by zero‐order reaction kinetics than first‐order reaction kinetics.  相似文献   

12.
Most established methods to characterize aquifer structure and hydraulic conductivities of hydrostratigraphical units are not capable of delivering sufficient information in the spatial resolution that is desired for sophisticated numerical contaminant transport modeling and adapted remediation design. With hydraulic investigation methods based on the direct-push (DP) technology such as DP slug tests, DP injection logging, and the hydraulic profiling tool, it is possible to rapidly delineate hydrogeological structures and estimate their hydraulic conductivity in shallow unconsolidated aquifers without the need for wells. A combined application of these tools was used for the investigation of a contaminated German refinery site and for the setup of hydraulic aquifer models. The quality of DP investigation and the models was evaluated by comparisons of tracer transport simulations using these models and measured breakthroughs of two natural gradient tracer tests. Model scenarios considering the information of all tools together showed good reproduction of the measured breakthroughs, indicating the suitability of the approach and a minor impact of potential technical limitations. Using the DP slug tests alone yielded significantly higher deviations for the determined hydraulic conductivities compared to considering two or three of the tools. Realistic aquifer models developed on basis of such combined DP investigation approaches can help optimize remediation concepts or identify flow regimes for aquifers with a complex structure.  相似文献   

13.
While tomographic inversion has been successfully applied to laboratory- and field-scale tests, here we address the new issue of scale that arises when extending the method to a basin. Specifically, we apply the hydraulic tomography (HT) concept to jointly interpret four multiwell aquifer tests in a synthetic basin to illustrate the superiority of this approach to a more traditional Theis analysis of the same tests. Transmissivity and storativity are estimated for each element of a regional numerical model using the geostatistically based sequential successive linear estimator (SSLE) inverse solution method. We find that HT inversion is an effective strategy for incorporating data from potentially disparate aquifer tests into a basin-wide aquifer property estimate. The robustness of the SSLE algorithm is investigated by considering the effects of noisy observations, changing the variance of the true aquifer parameters, and supplying incorrect initial and boundary conditions to the inverse model. Ground water flow velocities and total confined storage are used as metrics to compare true and estimated parameter fields; they quantify the effectiveness of HT and SSLE compared to a Theis solution methodology. We discuss alternative software that can be used for implementing tomography inversion.  相似文献   

14.
Zheng C  Gorelick SM 《Ground water》2003,41(2):142-155
Several recent studies at the Macrodispersion Experiment (MADE) site in Columbus, Mississippi, have indicated that the relative preferential flowpaths and flow barriers resulting from decimeter-scale aquifer heterogeneities appear to have a dominant effect on plume-scale solute transport. Numerical experiments are thus conducted in this study to explore the key characteristics of solute transport in two-dimensional flow fields influenced by decimeter-scale preferential flowpaths. A hypothetical but geologically plausible network of 10 cm wide channels of high hydraulic conductivity is used to represent the relative preferential flowpaths embedded in an otherwise homogeneous aquifer. When the hydraulic conductivity in the channels is 100 times greater than that in the remaining portion of the aquifer, the calculated concentration distributions under three source configurations all exhibit highly asymmetrical, non-Gaussian patterns. These patterns, with peak concentrations close to the source and extensive spreading downgradient, resemble that observed at the MADE site tracer tests. When the contrast between the channel and nonchannel hydraulic conductivities is reduced to 30:1 from 100:1, the calculated mass distribution curve starts to approach a Gaussian one with the peak concentration near the central portion of the plume. Additional analysis based on a field-scale model demonstrates that the existence of decimeter-scale preferential flowpaths can have potentially far-reaching implications for ground water remediation. Failure to account for them in numerical simulation could lead to overestimation of the effectiveness of the remedial measure under consideration.  相似文献   

15.
A Potential-Based Inversion of Unconfined Steady-State Hydraulic Tomography   总被引:1,自引:0,他引:1  
The importance of estimating spatially variable aquifer parameters such as transmissivity is widely recognized for studies in resource evaluation and contaminant transport. A useful approach for mapping such parameters is inverse modeling of data from series of pumping tests, that is, via hydraulic tomography. This inversion of field hydraulic tomographic data requires development of numerical forward models that can accurately represent test conditions while maintaining computational efficiency. One issue this presents is specification of boundary and initial conditions, whose location, type, and value may be poorly constrained. To circumvent this issue when modeling unconfined steady-state pumping tests, we present a strategy that analyzes field data using a potential difference method and that uses dipole pumping tests as the aquifer stimulation. By using our potential difference approach, which is similar to modeling drawdown in confined settings, we remove the need for specifying poorly known boundary condition values and natural source/sink terms within the problem domain. Dipole pumping tests are complementary to this strategy in that they can be more realistically modeled than single-well tests due to their conservative nature, quick achievement of steady state, and the insensitivity of near-field response to far-field boundary conditions. After developing the mathematical theory, our approach is first validated through a synthetic example. We then apply our method to the inversion of data from a field campaign at the Boise Hydrogeophysical Research Site. Results from inversion of nine pumping tests show expected geologic features, and uncertainty bounds indicate that hydraulic conductivity is well constrained within the central site area.  相似文献   

16.
Hydraulic fracturing has become an important technique for enhancing the permeability of hydrocarbon source rocks and increasing aquifer transmissivity in many hard rock environments where natural fractures are limited, yet little is known about the nature or behaviour of these hydraulically induced fractures as conduits to flow and transport. We propose that these fractures tend to be smooth based on observed hydraulic and transport behaviour. In this investigation a multi‐faceted approach was used to quantify the properties and characteristics of an isolated hydraulically induced fracture in crystalline rocks. Packers were used to isolate the fracture that is penetrated by two separate observation wells located approximately 33 m apart. A series of aquifer tests and an induced gradient tracer test were performed to better understand the nature of this fracture. Aquifer test results indicate that full recovery is slow because of the overall low permeability of the crystalline rocks. Drawdown tests indicate that the fracture has a transmissivity of 1–2 m2/day and a specific storage on the order of 2–9 × 10?7/m. Analysis of a potassium–bromide tracer test break through curve shows classic Fickian behaviour with minimal tailing analogous to parallel plate flow. Virtually all of the tracer was recovered, and the breakthrough curve dilution indicates that the swept area is only about 11% of a radial flow field and the estimated aperture is ≤0.5 mm, which implies a narrow linear flow region. These outcomes suggest that transport within these hydraulically induced ‘smooth’ fractures in crystalline rocks is rapid with minimal mixing, small local velocity fluctuations and no apparent diffusion into the host rock or secondary fractures. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

17.
This study investigates and quantifies the influence of physical heterogeneity in granular porous media, represented by materials with different hydraulic conductivity, on the migration of nitrate, used as an amendment to enhance bioremediation, under an electric field. Laboratory experiments were conducted in a bench‐scale test cell under a low applied direct current using glass bead and clay mixes and synthetic groundwater to represent ideal conditions. The experiments included bromide tracer tests in homogeneous settings to deduce controls on electrokinetic transport of inorganic solutes in the different materials, and comparison of nitrate migration under homogeneous and heterogeneous scenarios. The results indicate that physical heterogeneity of subsurface materials, represented by a contrast between a higher‐hydraulic conductivity and lower‐hydraulic conductivity material normal to the direction of the applied electric field exerts the following controls on nitrate migration: (1) a spatial change in nitrate migration rate due to changes in effective ionic mobility and subsequent accumulation of nitrate at the interface between these materials; and (2) a spatial change in the voltage gradient distribution across the hydraulic conductivity contrast, due to the inverse relationship with effective ionic mobility. These factors will contribute to higher mass transport of nitrate through low hydraulic conductivity zones in heterogeneous porous media, relative to homogeneous host materials. Overall electrokinetic migration of amendments such as nitrate can be increased in heterogeneous granular porous media to enhance the in situ bioremediation of organic contaminants present in low hydraulic conductivity zones.  相似文献   

18.
Small‐scale point velocity probe (PVP)‐derived velocities were compared to conventional large‐scale velocity estimates from Darcy calculations and tracer tests, and the possibility of upscaling PVP data to match the other velocity estimates was evaluated. Hydraulic conductivity was estimated from grain‐size data derived from cores, and single‐well response testing or slug tests of onsite wells. Horizontal hydraulic gradients were calculated using 3‐point estimators from all of the wells within an extensive monitoring network, as well as by representing the water table as a single best fit plane through the entire network. Velocities determined from PVP testing were generally consistent in magnitude with those from depth specific data collected from multilevel monitoring locations in the tracer test, and similar in horizontal flow direction to the average hydraulic gradient. However, scaling up velocity estimates based on PVP measurements for comparison with site‐wide Darcy‐based velocities revealed issues that challenge the use of Darcy calculations as a generally applicable standard for comparison. The Darcy calculations were shown to underestimate the groundwater velocities determined both by the PVPs and large‐scale tracer testing, in a depth‐specific sense and as a site‐wide average. Some of this discrepancy is attributable to the selective placement of the PVPs in the aquifer. Nevertheless, this result has important implications for the design of in situ treatment systems. It is concluded that Darcy estimations of velocity should be supplemented with independent assessments for these kinds of applications.  相似文献   

19.
A. Altunkaynak  Z. Şen 《水文研究》2011,25(11):1778-1783
Darcian flow law in aquifers assumes that the aquifer hydraulic conductivity is constant and the groundwater movement is due only to the piezometric level changes through hydraulic gradient. In practice, after the well development the aquifer just around the well has comparatively larger hydraulic conductivity and gradient. Patchy aquifer solutions in the literature consider sudden hydraulic conductivity changes with distance for the steady state flow. The change of transmissivity is demonstrated by the application of slope‐matching procedure to actual field data. It is the main purpose of this paper to derive simple analytical expressions for aquifer parameter evaluations with steadily decreasing hydraulic conductivity around the well. Spatial nonlinear hydraulic conductivity changes around a large‐diameter well within the depression cone of a confined aquifer are considered as exponentially decreasing functions of the radial distance. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
Two different deterministic and two alternative stochastic (i.e., geostatistical) approaches to modeling the distribution of hydraulic conductivity (K) in a nonuniform (sigma2ln(K)) = 0.29) glacial sand aquifer were used to explore the influence of conceptual model selection on simulations of three-dimensional tracer movement. The deterministic K models employed included a homogeneous effective K and a perfectly stratified 14 layer model. Stochastic K models were constructed using sequential Gaussian simulation and sequential i ndicator simulation conditioned to available K values estimated from measured grain size distributions. Standard simulation software packages MODFLOW, MT3DMS, and MODPATH were used to model three-dimensional ground water flow and transport in a field tracer test, where a pulse of bromide was injected through an array of three fully screened wells and extracted through a single fully screened well approximately 8 m away. Agreement between observed and simulated transport behavior was assessed through direct comparison of breakthrough curves (BTCs) and selected breakthrough metrics at the extraction well and at 26 individual multilevel sample ports distributed irregularly between the injection and extraction wells. Results indicate that conceptual models incorporating formation variability are better able to capture observed breakthrough behavior. Root mean square (RMS) error of the deterministic models bracketed the ensemble mean RMS error of stochastic models for simulated concentration vs. time series, but not for individual BTC characteristic metrics. The spatial variability models evaluated here may be better suited to simulating breakthrough behavior measured in wells screened over large intervals than at arbitrarily distributed observation points within a nonuniform aquifer domain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号