首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 162 毫秒
1.
Radar sensors are being used to provide two-dimensional imagery of the ocean surface. The radar image has a brightness variation which is proportional to the local backscatter cross-section of the surface at the wavelength of observation. The backscatter cross-section is, in turn, a function of the local surface topography and, in the case of a coherent radar system, of the surface dynamics. The synthetic-aperture radar imaging technique produces very high resolution images essentially independent of the distance to the surface being imaged. This technique is discussed in some detail. The emphasis is on recent observations of a large variety of ocean surface patterns. Deep ocean waves have been observed under a variety of weather conditions, including hurricanes. Breaking waves are observed because of the increase in roughness and the presence of foam. Discrete wave-like patterns, which resemble internal wave trains, have been observed in numerous locations; and eddy-shaped, linear, curvilinear and periodic slicks have also been seen. The different models for wave image formations are briefly reviewed. Specifically, the roughness modulation, tilt modulation, and orbital velocity models are discussed. Finally, it is shown that surface randomness does not destroy the coherence of the signal needed to generate the synthetic-aperture image because of the short-term coherence of the small Bragg waves.This paper presents the result of one phase of research carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract NAS7-100, sponsored by the National Aeronautics and Space Administration.  相似文献   

2.
The amplitude, wavelength, and frequency of short waves in the presence of waves of a longer scale vary in a manner that is related in phase to the long-wave profile. The purpose of this study is to observe and quantify the change in the variance of short-wave slope that occurs as a result of the change in short-wave position along a coincident long wave, during the active generation of the short-wave field by wind. To this end, measurements of wave-slope time series are made in a laboratory environment where the long-scale waves are generated mechanically and the short scale are generated primarily by air flow. The frequency variation of the short waves, as measured along the long-wave profile, is described by considering the waves to be linearly advected by the longer waves. The peak-to-peak variation along the long-wave profile of the short-wave slope variance for a given frequency band is commonly found to be 10% of its mean value. The magnitude of the excursions become smaller as short-wave frequency increases, and larger as wind speed increases. The maximum value of the short-wave slope variance generally leads the long-wave profile curve by 45 ° to 180 °.  相似文献   

3.
The evolution of a short-wave (SW) spectrum along a long wave (LW) isstudied. The evolution of the SW spectrum variation is treated in therelaxation time approximation. The variation of the SW spectrum is caused bythe LW orbital velocities and by the variation of the wind stress along thesurface of a LW. The latter is due to the distortion of the flow by a LW, andto the variation of the roughness induced by the modulated short waves. Thisintroduces a feedback mechanism: more SWs give rise to a larger roughness,which by increasing the local stress stimulates the growth of more SWs. It isshown that this aerodynamic feedback effect dominates the modulation of theSW spectrum for moderate and strong winds. The feedback mechanism is mosteffective for SWs in the gravity-capillary range, increasing its dominancewith increasing windspeed and decreasing frequency of a LW. The maximum ofthe SW amplitude modulation is situated at the crest of a LW. The results arein agreement with laboratory and field measurements of the short-wavemodulation.  相似文献   

4.
The El Niño-Southern Oscillation (ENSO) is investigated in a multicentury integration conducted with the coupled general circulation model (CGCM) ECHAM3/LSG. The quasiperiodic interannual oscillations of the simulated equatorial Pacific climate system are due to subsurface temperature anomaly propagation and a positive atmosphere-ocean feedback. The gravest internal wave modes contribute to the generation of these anomalies. The simulated ENSO has a characteristic period of 5–8 years. Due to the coarse resolution of the ocean model the ENSO amplitude is underestimated by a factor of three as compared to observations. The model ENSO is associated with the typical atmospheric teleconnection patterns. Using wavelet statistics two characteristic interdecadal modulations of the ENSO variance are identified. The origins of a 22 and 35?y ENSO modulation as well as the characteristic ENSO response to greenhouse warming simulated by our model are discussed.  相似文献   

5.
一次暴风雪过程中的中尺度重力波特征及其影响   总被引:2,自引:0,他引:2  
应用地面自动气象站观测资料、数字化多普勒天气雷达探测资料和WRFV2.2.1中尺度数值模拟资料,分析了中尺度重力波与基本气流的相互作用,以及重力波活动对暴雪和大风天气的重要影响。结果表明,在波导中传播的中尺度重力波能够与基本气流进行动量交换,使得对流层中上层4.5—8 km气层内的水平平均风速趋于均匀,形成斜穿整个对流层的饱和湿空气急流,即"湿急流"。在高空急流出口区激发的垂直向下传播的重力波,使基本气流的水平风速在垂直方向上出现了加速和减速的交替变化,水平风加速的气层,反射率增大;水平风减速的气层,反射率减小。随着波动下传及其随基本气流的移动,反射率回波强度沿高空风的方向(由西南向东北)出现周期性变化,回波带呈西北—东南走向,强回波中心之间为宽约40 km的弱回波区。重力波下传期间,当地面气压迅速下降时,东北风快速增长,风向有明显的改变,反射率强度开始减弱;气压脊线过后,反射率降低到最低点。地面大风中心出现在反射率回波强度周期性变化的地带,沿西南—东北方向间隔着分布。雷达探测表明,对流层低层风速在风向切变层上下边界对称相等,因此推测在重力波与切变层汇合的高度层存在垂直环流,由风切变层上下边界附近的西南气流和东北气流与受重力波影响形成的垂直方向上的上升和下沉气流共同组成。切变层上方的动量通过垂直环流的下沉支到达地面,强风中心对应着下沉气流,出现在降水回波开始减弱之际。  相似文献   

6.
Summary ?The fields of sea-level height anomaly (SLHA) and surface zonal wind anomaly (SZWA) have been analyzed to investigate the typical evolution of spatial patterns during El Ni?o-Southern Oscillation (ENSO) events. Sea surface temperature (SST) changes during ENSO events are represented as an irregular interplay of two dominant modes, low-frequency mode and biennial mode. Cyclostationary principal component (PC) time series of the former variables are regressed onto the PC time series of the two dominant SSTA modes to find the spatial patterns of SLHA and SZWA consistent with the two SSTA modes. The two regressed patterns of SLHA explain a large portion of SLHA total variability. The reconstruction of SLHA using only the two components reasonably depicts major ENSO events. Although the low-frequency component of SST variability is much larger than the biennial component, the former does not induce strong Kelvin and Rossby waves. The biennial mode induces much stronger dynamical ocean response than the low-frequency mode. Further decomposition of the SLHA modes into Kelvin and Rossby components shows how these two types of equatorial waves evolve during typical ENSO events. The propagation and reflection of these waves are clearly portrayed in the regressed patterns leading to a better understanding of the wave mechanism in the tropical Pacific associated with ENSO. A close examination suggests that the delayed action oscillator hypothesis is generally consistent with the analysis results reported here. Rossby wave development in the central Pacific in the initiation stage of ENSO and the subsequent reflection of Kelvin waves at the western boundary seems to be an important mechanism for further development of ENSO. The development of Kelvin waves forced by the surface wind in the far-western Pacific cannot be ruled out as a possible mechanism for the growth of ENSO. While Kelvin waves in the far-western Pacific serve as an intiation mechanism of ENSO, they also cause the termination of existing ENSO condition in the central and eastern Pacific, thereby leading to a biennial oscillation over the tropical Pacific. The Kelvin waves from the western Pacific erode the thermocline structure in the central Pacific preventing further devlopment of ENSO and ultimately terminating it. It should be emphasized that this wave mechanism is clear and active only in the biennial mode. Received August 15, 2001; revised March 6, 2002  相似文献   

7.
Nonlinear waves in barotropic model   总被引:2,自引:0,他引:2  
In this paper, from the system of equation describing a barotropic atmosphere using the method of Taylor expansion for the nonlinear terms, the periodic solutions of the nonlinear inertio-surface gravity waves and Rossby waves have been obtained.The finite-amplitude nonlinear inertio-surface gravity waves and Rossby waves with horizontal divergence satisfy all the KdV equation. The solutions are all the cnoidal function, i, e, the cnoidal waves which in-clude the linear waves and form the solitary waves under certain conditions. For the finite-amplitude Rossby waves with horizontal divergence, we find the new dispersive relation including both the wave number and the amplitude parameter. In case of small amplitude it is reduced to the Yeh formula. It is shown that the larger the amplitude and width, the faster the finite-amplitude inertio-surface gravity waves and the slower the finite-amplitude Rossby waves with horizontal divergence propagate. The blocking or cut-off system in which the amplitude and width are large may be considered as Rossby solitary waves.  相似文献   

8.
Turbulent fluctuations in active mixed layers can excite internal waves in stably stratified fluid regions adjoining them. Expressions are derived for the energy and momentum fluxes radiated away by internal waves from an oceanic mixed layer, in terms of the spectrum of the static pressure fluctuations imposed at the base of the mixed layer by the turbulent eddies. The role of these internal wave fluxes in questions such as the determination of the rate of deepening of the layer due to an applied surface stress and the origin of internal waves in the deep ocean is discussed.  相似文献   

9.
Abstract

The European Space Agency ERS‐1 C‐band V‐V polarization synthetic aperture radar (SAR) and the Russian Almaz S‐band H‐H polarization SAR are compared for their wavenumber response to ocean wave fields existing on 23 November 1991 at the Grand Banks site of the North American ERS‐1 SAR Wave Spectra Validation Experiment. Two‐dimensional wave spectra from two Wavec heave, pitch and roll buoys and a Canadian CV‐580 aircraft C‐band V‐V polarization SAR are used to condition a linear modulation transfer model of wave imaging with SAR. A model of hydrodynamic modulation is included with the velocity bunching and tilt imaging mechanisms to better understand wind and wave interactions. Krogstad's quasi‐linear formulation of Hasselmann's ocean‐SAR integral transform is applied to model SAR velocity bunching and azimuth smearing. Narrow and broad bandwidth components of azimuth wavenumber response for the aircraft SAR are associated with, respectively, non‐linear and incoherent velocity smearing during Doppler resolution of the radar scene. The stationary resolutions of the SAR systems are compared for homogeneous scenes of wind‐roughened, but fetch‐limited, sea surfaces. This comparison is conducted in the Chesapeake Bay of Maryland using ERS‐1 and Almaz satellite imagery collected on 9 May 1992 and 14 May 1991, respectively. The results confirm that SAR imaging of ocean waves can be improved by flying platforms with low R/V (range/velocity) ratios to alleviate the azimuth velocity smear, and near‐nadir incidence angles to increase the effect of tilt modulation.  相似文献   

10.
The interaction between non-uniform near-surface currents and long surface waves is shown to produce large-scale secondary circulations. The circulations are caused by the Craik–Leibovich vortex force imposed on the existing non-uniform current by the surface waves. The current could be produced by different types of sources, such as by ship wakes or by river and sewer outflows. In this paper the circulations are considered for three representative types of currents: a near-surface jet, a shear current, and an underwater jet. A model similar to the model of Langmuir circulations is formulated and studied numerically. The general model takes into account the effect of viscosity on the main current as well as the effect of the circulation-related advection on the main current and secondary flow itself. A simplified model that describes the initial stage of the development of circulations was used in order to demonstrate the strength of the phenomenon and its dependence on some parameters of the problem. At this initial stage, the effect of viscosity on the main current as well as the effect of advection caused by the circulations was neglected (under assumption that the perturbation velocity is small). The effect of the viscosity on the circulations was included in the solution, and it was shown that initial development of the circulations is practically independent of the viscosity. This fact simplifies the solution of the problem and removes the uncertainty related to the value of the turbulent viscosity at the initial stage of the circulations. The results obtained demonstrate that strong circulations are generated under very realistic assumptions regarding the parameters of the current and the surface waves. The maximum velocity at the surface produced by such circulations can easily reach several centimeters per second. A circulatory flow with this magnitude of velocity at the surface can significantly affect short surface waves and, correspondingly, radar and optical signatures produced by the initial currents on the sea surface. Some important conclusions about the nature of these signatures are made based on numerical results and simple qualitative arguments. Theoretical predictions include, for example, the asymmetry of centerline ship wakes and the difference in the width and length between images of two wakes of similar ships moving in opposite directions when ambient surface waves are present.  相似文献   

11.
Experiments are performed in a 13-m cylindrical tank to study the generation of interfacial internal waves by barotropic sinusoidal waves passing over a slope. At each tidal cycle, there are two waves generated, one propagating onshore and the other propagating offshore. The amplitude of the waves increases with increasing forcing and evolves as nonlinear waves if the shelf width is smaller than the wavelength of the baroclinic tide. Rotation does not modify the generating mechanism but the amplitude of the generated waves decreases with increasing rotation rate; also no internal waves are generated when the forcing period is larger than the inertial period, and at high rotation rate, there are only dispersive waves propagating from the shelf break region. The experiments covered a large range of internal Froude number, Rossby number and temporal Rossby number and compare well with in situ observations.  相似文献   

12.
We report results of ultra wide-band radar sea spike experiments using steep and weakly breaking non-linear water surface features in a wave tank. To generate these features we used a 1 s paddle wave and wind waves for a sequence of wind speeds. A scanning laser was used to measure synchronously the surface slope profile across 12 cm along the wave propagation direction once per radar pulse. A time domain reflectometer (TDR) radar transmitted short horizontally polarized pulses at X-band, several hundred picoseconds long, to give a range resolution of 10 cm. A radar range of 36 cm was digitally sampled so that surface feature echoes could be tracked through the area continuously with 5 ms temporal resolution with each instrument. We report results considering the wave slope component in the propagation direction and the corresponding curvature component. For the conditions studied, two types of features which produce sea spike radar echoes were generated–a non-linear feature near the crest front of the wind wave, caused by extreme steepening as a result of the passage of the paddle wave, and a steepened blocked wind wave in the trough of the paddle wave, caused by the local orbital current of the 1 s wave being nearly equal to and opposite the phase velocity of the wind wave.  相似文献   

13.
Turbulent fluctuations in active mixed layers can excite internal waves in stably stratified fluid regions adjoining them. Expressions are derived for the energy and momentum fluxes radiated away by internal waves from an oceanic mixed layer, in terms of the spectrum of the static pressure fluctuations imposed at the base of the mixed layer by the turbulent eddies. The role of these internal wave fluxes in questions such as the determination of the rate of deepening of the layer due to an applied surface stress and the origin of internal waves in the deep ocean is discussed.  相似文献   

14.
The dynamics of sea surface temperature (SST) anomalies that force stationary atmospheric waves, which in turn, feed back on the SST field is addressed. The phenomena is isolated by analyzing the dynamics of a slab ocean that is thermally coupled to an atmospheric model. Particular emphasis is put on identifying SST structures that are weakly damped by the joint effect of air–sea heat transfer and atmospheric wave dynamics.A frame work is presented that singles out long-lived SST features in a slab ocean coupled to an arbitrary linear atmospheric model. It is demonstrated that an SST anomaly eventually disintegrates into a number of propagating wave packets. The wave packets are confined in a Gaussian envelope, and each packet is tied to a stationary wave of a particular wavelength. These structures are a manifestation of coupled SST-atmosphere mode, for which the atmosphere and the ocean nearly are in thermal equilibrium. However, a small disequilibrium causes the wave packet to propagate and to broaden in an apparent diffusive manner.Central ideas pertaining to the mid-latitude SST dynamics are illustrated by analyzing the thermal feedback between a two-level atmospheric model (on a β-plane) and a dynamically passive slab ocean. The relevance of the present idealized coupled-modes to the SST variability in the mid-latitudes and in atmospheric GCMs coupled to slab oceans is discussed.  相似文献   

15.
采用理论分析与数值计算相结合的方法研究了理想开阔海域中的台风暴潮模型,讨论了开阔海域中移行台风下的海洋响应。分析表明,在开阔的浅海域,台风下的海洋运动以地转流为主,同时又激发出振幅较小的重力惯性流。重力惯性波是由于台风强度或移速的突然变化引起的,其波速通常大于台风移速。台风气压场造成海面升高且基本符合“静压效应”,但产生的正压流场非常微弱。伴随强风的气旋性风场造成的海面下降在台风经过之后可以维持很长时间,从而在台风后面形成一个长达几百公里的尾迹。而台风风应力和气压梯度力的总效果是在台风正前方造成海面上升,正后方造成海面下降。  相似文献   

16.
By using a linear oceanic mixed layer model, the long period waves in the tropical ocean are investi-gated numerically. Due to the inhomogeneity of the large-scale average sea temperature field of the ocean in tropical regions, besides the westward propagating equatorial Rossby wave to be modified, there will be a kind of long period thermal wave which propagates eastward under certain oceanic background conditions. Under the influences of these two kinds of waves, the propagating and evolving processes of the sea surface temperature anomalies (SSTA) are dearly shown by numerical experiments. The results of numerical ex-periments are consistent with the ones obtained by the theoretical analysis in Part I. The possible relation-ship between these two kinds of waves and El Nino events is also discussed indirectly.  相似文献   

17.
Atmospheric cyclones with strong winds significantly impact ocean circulation, regional sea surface temperature, and deep water formation across the global oceans. Thus they are expected to play a key role in a variety of energy transport mechanisms. Even though wind-generated internal gravity waves are thought to contribute significantly to the energy balance of the deep ocean, their excitation mechanisms are only partly understood.The present study investigates the generation of internal gravity waves during a geostrophic adjustment process in a Boussinesq model with axisymmetric geometry. The atmospheric disturbance is set by an idealized pulse of cyclonic wind stress with a Rankine vortex structure. Strength, radius and duration of the forcing are varied. The effect upon wave generation of stratification with variable mixed-layer depth is also examined.Results indicate that internal gravity waves are generated after approximately one inertial period. The outward radial energy flux is dominated by waves having structure close to vertical mode-1 and with frequency close to the inertial frequency. Less energetic higher mode waves are observed to be generated close to the sea floor underneath the storm. The total radiated energy corresponds to approximately 0.02% of the wind input. Deeper mixed-layer conditions as well as weaker stratification reduce this fraction.The low energy transfer rates suggest that other processes that drive vertical motion like surface heat fluxes, turbulent motion, mixed region collapse and storm translation are essential for significant energy extraction by internal gravity waves to occur.  相似文献   

18.
The effects of vertical eddy viscosity on simple mesoscale waves in the ocean are studied. The decay of Rossby waves is investigated by one-dimensional depth-dependent linear stability problems which are derived for the interior non-viscous or viscous quasigeostrophic flow using parameterizations of the top and bottom boundary layers corresponding to Ekman suction, no-stress and bottom-stress boundary conditions.The non-slip condition at the bottom yielding an O(Ev1/2)-Ekman layer causes very short damping times for the 0th Rossby mode. This suggests that this boundary condition is not suitable for mesoscale wave studies, because a Rossby wave fit for the MODE eddy can be done satisfactorily without any damping. Reasonable results for damping times of Rossby waves are obtained by prescribing the bottom stress, resulting from the constant-stress layer at the bottom, and the free-slip condition at the surface. The growth rates of Eady waves are reexamined using this bottom-stress condition.Vertical viscosity in the interior of the ocean, e.g. internal wave induced viscosity, may have a significant influence on the dynamics of the mesoscale motions, comparable to that of the boundary layers in some cases. The results are compatible with the sparse observations available.  相似文献   

19.
1. IntroductionInvestigations about atmospheric LFW have been a focus of research since Madden andJulian/s outstanding analysis works (1971, 1972). Many dynamical and thermal mechanisms(Chao et al., 1996; Fu et al., 1998; Hendon et al., 1998; Krishnamurti et al., 1988; Lau andChan, 1988) have been advised to explain LFW. Among them are oceanic effects, such as SSTeffect, thermal forcing and others. Usually atmosphere and ocean are taken as a coupled system, which is used to explain ENS…  相似文献   

20.
Unstable tropical air-sea interaction waves and their physical mechanisms   总被引:1,自引:0,他引:1  
In this paper, the tropical air-sea interaction is discussed by using a simple air-sea coupled model, in which the inertia-gravity waves are filtered off and only the equatorial Rossby waves are reserved in both the atmosphere and the ocean. There exist two kinds of air-sea interaction waves in the coupled model, that is, the high-frequency fast waves and the low-frequency slow waves. The phase speed of the fast waves is westward and the frequencies are close to those of the equatorial Rossby waves in the atmosphere. The slow waves propagate westward in the part of short wavelengths and eastward in that of long wavelengths. There exist instabilities for both the westward and eastward propagating slow waves. If the fast waves are filtered off, there is little effect on the slow waves which have great in-fluence on the long range process in the tropical air-sea coupled system. According to the tropical air-sea interaction waves we obtain here, a possible explanation to the propagating process of ENSO events is given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号