首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
广州冬季大气消光系数的贡献因子研究   总被引:12,自引:1,他引:11  
2008年1月1~31日和2月6~24日在广州城区每天采集一个PM2.5样品,对样品进行有机碳、元素碳及水溶性离子分析,利用美国IMPROVE能见度方程计算得到广州冬季大气消光系数.结果发现:冬季PM2.5 日均值质量浓度为89.0±53.4/μg·m~(-3),OC(Organics Carban)质量浓度为16.9±11.9μg·m~(-3),EC(Element Carbon)质量浓度为5.9±3.4 μg·m~(-3),水溶性离子总浓度为43.9±23.5μg·m~(-3).冬季大气消光系数均值为342±185 Mm~(-1).广州冬季大气消光系数主要贡献者为(NH_4)_2SO_4、NH_4NO_3、POM(Par-ticular organic matter)、EC和NO_2,对消光系数的贡献率分别为36.3%、14.5%、26.6%、17.4%和5.2%.  相似文献   

2.
采集2012年春季和秋季成都城区的PM2.5(空气动力学当量直径小于等于2.5μm的颗粒物,即细颗粒物)样品,分析得到水溶性离子、有机碳(OC)和元素碳(EC)等化学成分。结果表明,春季和秋季PM2.5的浓度分别为101±64μg m~(-3)和88±30μg m~(-3),是环境空气质量标准(GB3095-2012)日均值的1.3倍和1.2倍。基于K~+、OC/EC(OC浓度/EC浓度)和K~+/EC(K~+浓度/EC浓度)指标判别生物质燃烧事件,结果发现春、秋季生物质燃烧期间PM2.5中OC、EC和K~+、Cl~-等成分明显高于非生物质燃烧期;SO_4~(2-)、NH_4~+、Ca~(2+)、Mg~(2+)、NO_3~-、Na~+等其它水溶性离子浓度在生物质燃烧期均有不同程度升高。春、秋季生物质燃烧期间OC浓度分别是非生物质燃烧期的4.2倍和1.8倍,EC为非生物质燃烧期的2.3倍和2.3倍。K~+和Cl~-浓度在春季生物质燃烧期超过平均值的3倍,在秋季生物质燃烧期超过平均浓度的0.8倍和0.9倍。  相似文献   

3.
南京北郊黑碳气溶胶的浓度观测及辐射强迫研究   总被引:2,自引:0,他引:2  
利用2008年南京大学浦口校区气溶胶采样数据对碳气溶胶的浓度变化特征进行了分析,建立了由气溶胶光学参量计算模块(OPAC)和辐射传输模型(TUV)组成的箱模式,并结合实际观测资料,利用该模式对南京北郊黑碳气溶胶的光学厚度及辐射强迫进行了评估。结果表明:南京北郊黑碳气溶胶(BC)的年平均浓度为6.7±4.6μg/m3,有机碳气溶胶(OC)的年平均浓度为21.3±13.3μg/m3,有机碳与黑碳气溶胶浓度的平均比值为3.4。黒碳气溶胶浓度具有夏季低、冬春季高的特点。由箱模式计算得到的黒碳气溶胶的年均光学厚度为0.07,年均吸收系数为44 Mm–1。白天正午晴空条件下黑碳所造成的最大瞬时地面辐射强迫可达-22.9±14.3 W/m2,在大气层顶造成的最大瞬时辐射强迫为12.5±7.3 W/m2。  相似文献   

4.
利用阿勒泰平原地区阿克达拉大气本底站2010年1月1日—2016年12月31日的臭氧质量浓度数据与PM_(10)等相关气象资料相结合,对臭氧质量浓度的日、周、月、季节、年变化特征以及影响臭氧浓度变化的主要因素进行了分析。结果分析表明:臭氧每小时平均质量浓度日变化规律呈显著单峰型,夜晚的变化较小,白天变化较大,01:00前后达到最小值,16:00左右达到峰值;臭氧每日平均质量浓度变化不具有较为明显的"周末效应"现象,峰值出现在星期六,日平均质量浓度为63.2μg·m~(-3),最低值出现在星期一,日平均质量浓度为60.0μg·m~(-3),日平均质量浓度最高值和最低值仅相差3.2μg·m~(-3);臭氧月平均质量浓度最高出现在2014年5月,为85.1μg·m~(-3),最低月平均质量浓度出现在2015年11月,为32.2μg·m~(-3);春、夏季臭氧质量浓度较高,秋季和冬季明显低于春季和夏季;2010—2016年臭氧浓度趋势线整体呈下降趋势,其中2012—2014年臭氧浓度连续月变化有明显的单峰型年度变化规律;臭氧浓度与PM_(10)质量浓度变化具有明显的逆向变化趋势,同时存在时间变化上的延迟性,并且臭氧的浓度变化早于PM_(10)质量浓度的变化。  相似文献   

5.
中国不同区域大气气溶胶化学成分浓度、组成与来源特征   总被引:6,自引:0,他引:6  
张小曳 《气象学报》2014,72(6):1108-1117
为获得中国不同区域大气气溶胶化学组成的总体"图景",进一步探讨污染治理方向,需要分区域评估其化学成分浓度水平、组成与来源特征。通过对近地层中国内陆大气气溶胶中6种主要化学成分(硫酸盐、硝酸盐、铵、有机碳、黑碳和矿物气溶胶)至少有1 a观测研究的评估分析,获得不同区域气溶胶化学成分质量浓度水平与组成的评估结果,认识到在气溶胶污染最严重的4大区域(即北京以南的华北与关中平原区域、以长三角为主体的华东区域、以珠三角为主体的华南区域以及四川盆地)的PM_(10)中矿物气溶胶(所占比例在20%38%)、硫酸盐(14%-24%)、有机碳(11%-18%)是3个主要组分;其中华北与关中平原气溶胶污染在中国最重,硫酸盐浓度在35—47μg/m~3(远高于北京(13—18μg/m~3))、有机碳28—45μg/m~3(约是北京(19—22μg/n~3)的1.8倍)、硝酸盐19—22μg/m~3(约是北京(9.9—12μg/m~3)的2倍)、铵14—16μg/m~3(仍然比北京(6.2-8.4μg/m~3)高1倍),黑碳在北京和北京以南城市的浓度差别不大(9.1—12μg/m~3)。这其中燃煤对硝酸盐和有机碳气溶胶的贡献超过50%,农业活动是铵的最重要来源。华东、华南和东北城市区域气溶胶化学成分浓度水平与北京相近,但四川盆地城市站各组分浓度均高于北京,污染较重。西北兰州城市站,除了黑碳浓度低很多、硝酸盐浓度稍高外,其他气溶胶化学成分浓度水平与北京相当。西北偏远区域沙漠站点,各种气溶胶化学成分的浓度都要远低于北京。青藏高原和云贵高原城市站气溶胶化学成分浓度与北京相比也明显偏低。不同区域气溶胶化学组成分析显示,燃煤、机动车、城市逸散性粉尘和农业活动是4个最需要关注的污染源,加强除发电行业外的燃煤脱硫,进一步消减燃煤氮氧化物、一次有机碳和挥发性有机物排放,并有效减少农业活动排放到大气中的氨,更有效限制硫酸盐和硝酸盐的形成是已有大气污染治理对策基础上,未来应特别关注的控制方向。  相似文献   

6.
保定市大气颗粒物中含碳组分粒径分布   总被引:5,自引:0,他引:5  
北京-天津-河北地区工业城市保定大气颗粒物(Particulate matter,PM)污染严重,保定大气颗粒物尤其是细粒子和超细粒子污染严重,其中含碳组分具有重大贡献,PM1.1、PM2.1和PM2.1-9.0中含碳气溶胶总量(total carbonaceous aerosols,TCA)分别占到(49±20)%、(45±19)%和(19±7)%。PM9.0中的含碳气溶胶主要富集在PM2.1乃至PM1.1中。颗粒物浓度谱分布及含碳气溶胶富集量呈显著季节变化,由于采暖过程秋冬季各粒径段有机碳(organic carbon,OC)和元素碳(elemental carbon,EC)的浓度均增加,秋、冬季节细颗粒物中OC浓度可高达44.0±38.3、78.5±30.2μg m-3,EC浓度分别为3.5±1.6、8.5±6.8μg m-3。各个季节OC和EC在总悬浮颗粒物(total suspended particulate,TSP)中的几何平均直径(geometric mean diameter,GMD)均集中在较小粒径段。粗颗粒物中OC的GMD在春夏季较高,秋季减少,而冬季最低。而粗颗粒物中EC的GMD则是冬季最高,夏季最低。保定0.4μm的颗粒物中OC/EC比值4个季节的水平较为稳定,春、夏、秋、冬季OC/EC比值分别为5.2、3.5、4.1和5.4,来源主要为交通和燃煤。其余几个粒径段的颗粒物的来源更为复杂,其来源主要为燃煤、木材和生物质。  相似文献   

7.
北京雾、霾天细粒子质量浓度垂直梯度变化的观测   总被引:9,自引:3,他引:6  
近年来北京城市区域雾霾天气显著增加,不仅严重影响工农业生产和交通运输,还严重影响人体健康.2007年夏秋季节,北京325 m气象塔8、80和240m平台梯度观测结果表明,雾、霾、晴三种典型天气状况大气细粒子质量浓度垂直分布各有特点,雾天(11月5~6日)低层浓度明显偏高,6日从低到高3层PM2.5(空气动力学直径小于等于2.5μ的大气气溶胶)浓度日均值分别为352.6±79.3、224.7±69.0、214.8±32.8 μg·m~(-3);霾天(8月19~20日)细粒子上下混合均匀,19日从低到高3层PM2.5浓度分别为89.8±29.3、88.9±29.8、90.0±31.7 μg·m~(-3);晴天(8月22~23日)细粒子昼夜变化明显,夜间在80 m高度出现明显分层,23日80 m以下平均值为32.6±13.1μg·m~(-3),240 m平均值为27.4±13.5μg·m~(-3).雾天细粒子主要来源于局地,霾天细粒子污染表现为时空分布十分均匀的城市群区域污染特征且污染物积累;连续晴天细粒子明显被清除.  相似文献   

8.
华北大气污染区域化正在对农业生态区域产生显著影响,为了了解华北农业地区大气细颗粒物PM2.5的季节分布特征,2017年7月、9月、12月以及2018年4月在中国科学院禹城农业生态综合实验站进行分季节PM2.5样品采集,并测定分析了样品中31种化学成分.结果表明,碳质气溶胶总体的浓度水平为13.11±8.37μg m-3,有机碳(OC)冬春季节浓度较高,元素碳(EC)浓度在秋冬季节较高.同时OC/EC的比值在秋季明显偏低,表明在秋季二次碳质气溶胶对PM2.5贡献较小.水溶性离子浓度总体在冬季最高.NO3-/SO2-4比值在夏季明显偏低为0.69,华北地区夏季固定点源对大气污染的贡献相对较高.PM2.5中金属元素以Na、Mg、Al、Ca、K、Fe等地壳元素为主,具有致癌风险的Co、Cr、Ni、Pb、As等金属元素年均浓度为0.32±0.24 ng m-3、5.40±5.42 ng m-3、10.23±7.46 ng m-3、42.23±27.75 ng m-3、5.66±3.79 ng m-3.受体模型(PMF)计算结果表明,PM2.5的主要来源为二次污染源、生物质燃烧源、燃煤燃油源、柴油车尾气和土壤源,贡献率分别达37.1%、18.2%、14.2%、9.4%和7.9%,表明农业区细颗粒物污染受到华北工业、农业与自然排放的多重影响.  相似文献   

9.
北京乡村地区分粒径气溶胶OC及EC分析   总被引:2,自引:0,他引:2       下载免费PDF全文
利用北京上甸子区域大气本底站2004年观测的分粒径大气气溶胶资料,分析了气溶胶中有机碳 (OC) 及元素碳 (EC) 的质量浓度水平、季节变化、尺度分布特征、OC与EC比值及其相关性。结果显示:上甸子站总悬浮颗粒物 (TSP) 中OC平均质量浓度为7.5~31.5 μg·m-3,EC质量浓度为1.4~6.6 μg·m-3;PM2.1(粒径小于2.1 μm) 中OC质量浓度为4.0~19.1 μg·m-3,EC质量浓度大约为0.8~4.3 μg·m-3。冬季OC及EC质量浓度明显高于其他季节,其中冬、夏、秋季OC及EC峰值粒径出现为0.65~2.1 μm,但在春季峰值粒径移至2.1~4.7 μm。观测期间,OC与EC质量浓度比值平均为4~6,该比值略高于文献报道的我国一些城市地区的观测结果。  相似文献   

10.
《高原气象》2021,40(3):671-679
利用EA-12型黑碳仪对邢台市2019年1-12月的黑碳(BC)浓度监测数据和同期气象观测数据,分析了邢台市BC污染特征、来源及与气象因子的变化关系。结果表明:邢台市BC日平均浓度为0.85μg·m~(-3),全年占比79.80%的浓度频数集中分布在0.30~1.20μg·m~(-3);而1月份占比达到90.62%的浓度频数分布在1.05~5.05μg·m~(-3),1月份的严重BC污染对全年环境空气质量恶化起到了重要贡献;当风速8 m·s~(-1)和8 m·s~(-1)时,分别存在偏北方向和偏西与偏南方向的输送影响;湿沉降可以对BC起到了清除作用,而降水量和降水时长对BC的湿清除具有同等的重要作用;燃煤和机动车尾气排放的本地、局地源对邢台市的BC污染影响明显,当大气逆温底高200 m时,由于扩散能力减弱和堆积效应的共同影响,BC浓度将出现明显增加。  相似文献   

11.
利用2014年本溪市大气颗粒物质量浓度监测资料和风速、气温、相对湿度、气压等常规地面气象要素观测资料,分析了本溪地区大气颗粒物质量浓度的月、季变化特征及其与气象要素的相关性。结果表明:2014年7月和10月本溪市大气颗粒物质量浓度较高,5月和9月大气颗粒物质量浓度较低,6月和11月大气颗粒物质量浓度比值较高。夏季PM10质量浓度较低,平均浓度为115.1μg·m~(-3);冬季PM_(2.5)和PM_(1.0)质量浓度较高,平均浓度分别为99.5μg·m~(-3)和86.1μg·m~(-3)。春季和冬季平均风速与大气颗粒物质量浓度的相关性最好,夏季和冬季相对湿度与大气颗粒物质量浓度的相关性最好。当ρ(PM_(2.5))≥200.0μg·m~(-3)时,ρ(PM_(2.5))与平均气温呈显著的正相关关系,相关系数为0.5288,ρ(PM_(2.5))与相对湿度的相关系数也高达0.6981,高温、高湿和小风等气象条件是本溪地区大气颗粒物高质量浓度事件发生的有利气象条件。  相似文献   

12.
2010年长江三角洲临安本底站PM2.5理化特征   总被引:2,自引:0,他引:2       下载免费PDF全文
2010年在代表长三角区域背景地区的浙江省临安区域大气本底站开展了对大气细粒子PM2.5为期1年的地面观测,并对细粒子中水溶性离子和碳组分的季节变化特征进行了分析。临安2010年大气中PM2.5质量浓度平均为 (58.2±50.8) μg·m-3,PM2.5质量浓度季节变化明显。利用HYSPLIT4模式计算了2010年临安72 h后向轨迹,根据轨迹计算与聚类结果,结合地面观测的PM2.5数据进行了分析。研究表明:临安地区因受到长江三角洲区域及偏北气流引起的污染传输影响,呈现出高细粒子水平特征。PM2.5中总水溶性离子年平均质量浓度为 (28.5±17.7) μg·m-3,占PM2.5质量浓度的47%。其中,气溶胶组分SO42-,NO3-和NH4+所占比例最大,共占总水溶性离子的69%。PM2.5中有机碳和元素碳的年平均质量浓度分别为 (10.1±6.7) μg·m-3和 (2.4±1.8) μg·m-3。有机碳和元素碳质量浓度显著相关,表明有机碳和元素碳主要来自相同的排放源。  相似文献   

13.
太原冬季PM2.5中有机碳和元素碳的变化特征   总被引:4,自引:2,他引:4       下载免费PDF全文
2005年12月—2006年2月在太原市区持续观测了气溶胶细粒子PM2.5, 并应用Sunset碳分析仪进行了有机碳 (organic carbon, OC) 和元素碳 (elemental carbon, EC) 的测定。结果表明:太原冬季PM2.5, OC和EC浓度均较高, 其中PM2.5日平均浓度变化范围为25.4~419.0 μg/m3, 日平均浓度为193.4±102.3 μg/m3, OC平均浓度为28.9±14.8 μg/m3, EC平均浓度为4.8±2.2 μg/m3, OC/EC平均比值是7.0±3.9, 即太原市冬季PM2.5和碳气溶胶污染严重。OC在PM 2.5中占18.6%, EC占2.9%, 这表明碳气溶胶是太原大气细粒子污染控制的关键组分。在太原市冬季, 采暖燃烧的煤是OC和EC的主要贡献源, 造成OC大大高于EC, 从而使OC/EC比值增大。各种气象条件对PM2.5, OC, EC和OC/EC比值的变化都有不同程度的影响, 特别是大雾天气、相对湿度、风速和降雪是影响碳气溶胶浓度变化的重要因素。  相似文献   

14.
河北石家庄市近地层臭氧浓度特征及气象条件分析   总被引:1,自引:0,他引:1  
利用2016年3月至2018年2月河北石家庄市环境监测站O_3及其前体物质量浓度逐时和逐日观测资料,以及气象站逐日气象观测数据,分析石家庄市近地层O_3质量浓度的时间变化特征及其与前体物NO_2、CO和气象条件的关系。结果表明:石家庄市O_3污染2017年比2016年严重,2017年比2016年O_3超标日数增加30 d,超标率上升8%,O_3年平均质量浓度上升17μg·m~(-3)。O_3质量浓度具有明显的季节变化特征,自夏季、春季、秋季、冬季依次降低,5—9月O_3质量浓度较高,平均值超过160μg·m~(-3),6月达到峰值208μg·m~(-3)。O_3质量浓度的日变化表现为单峰型分布,最低值出现在07:00左右,峰值在14:00—16:00。太阳辐射强、气温高、日照时数长、能见度好、无降水和相对湿度较低的条件下,石家庄市易出现O_3浓度超标天气。前体物NO_2、CO与O_3质量浓度之间夏季呈现显著正相关,而冬季则呈显著负相关。  相似文献   

15.
O_3和PM_(2.5)是影响长三角地区空气质量的主要污染物。利用2016年33个城市大气环境监测站6项污染物的小时浓度及4个省会城市的气象数据进行统计分析,研究了该地区O_3和PM_(2.5)浓度的时空分布特征及其影响因素。结果表明:长三角地区O_3年平均浓度为50~73μg·m~(-3),平均为61μg·m~(-3);除芜湖和宣城外,其余31城市均存在不同程度的超标状况,超标率为0.34%~18.86%,平均为5.68%。O_3在5月和9月达到浓度高值;四季O_3日变化均呈单峰型,峰值出现在15∶00,夏季O_3峰值浓度最高值为157μg·m~(-3)。O_3浓度沿海城市整体高于内陆城市;夏季宿迁—淮安—滁州片区O_3污染较重。O_3与NO_2、CO显著负相关,且与NO_2相关性较强;O_3与气温、日照时数显著正相关,与相对湿度、降水呈负相关。PM_(2.5)年平均浓度在25~62μg·m~(-3)范围内,平均为49μg·m~(-3);各城市均出现PM_(2.5)超标,滁州PM_(2.5)超标率最大,为23.91%。PM_(2.5)在3月和12、1月达到浓度峰值;其日变化呈双峰型,09∶00—10∶00和22∶00—23∶00达到峰值。冬季徐州PM_(2.5)浓度最高,为102μg·m~(-3)。PM_(2.5)与NO_2、CO、SO_2、PM_(10)显著正相关,与气温、风速、降水负相关。  相似文献   

16.
利用北京南郊观象台2016年3月1日-2017年2月28日β射线法与TEOM法观测的PM_(10)质量浓度观测数据,通过t检验、线性回归和相关分析等方法对两种方法观测的小时、日、周、月、季等数据进行相关性分析。结果表明:两种方法观测的PM_(10)小时平均质量浓度总体的线性回归方程相关系数R~2为0.870;在低浓度范围(PM_(10)50μg·m~(-3))时二者为微弱相关(R~2=0.073);中等浓度范围(50μg·m~(-3)≤PM_(10)350μg·m~(-3))时二者为低度相关(R~2为0.257~0.346);高浓度范围(PM_(10)≥350μg·m~(-3))时二者为高度相关(R~2=0.686)。二者日平均PM_(10)质量浓度数据总体的R~2为0.929;二者PM_(10)质量浓度小时数据周相关系数为0.598~0.980。二者月平均PM_(10)质量浓度数据间的相关系数为0.628~0.976;二者季节的R~2为0.627~0.944,呈现冬季的秋季的春季的夏季的。由此可发现,两种观测方法观测的PM_(10)质量浓度的结果总体呈显著性的线性相关关系,且浓度越高,相关性越强。  相似文献   

17.
华北平原大气污染与低能见度状况一直是人们关切的问题.本文通过分析2014-2017年PM_(2.5)化学成分的浓度和消光效果,研究了华北平原典型城市保定市的大气污染特征.结果表明,PM_(2.5)分的年均浓度显示下降趋势,水溶性无机离子,碳质气溶胶和金属元素分别减少了11μg m~(-3),23μg m_(-3)和1796 ng m_(-3).NH_4~+,NO_3~-和SO_4~(2-)是PM_(2.5)污染的主要污染物,三者之和占总离子浓度的82.9%.基于IMPROVE方程对细颗粒物进行重构,在观测期间PM_(2.5)质量浓度平均为93±69μg m~(-3),春季,夏季,秋季和冬季的消光系数分别为373.8±233.6 M m~(-1)±,405.3±300.1 M m~(-1),554.3±378.2 M m~(-1)和1005.2±750.3 M m~(-1).硫酸铵,硝酸铵和有机物对消光的贡献最大,不同季节下占比达55%~77%.通过PM_(2.5)组分进行重构,利用IMPROVE算法计算得到Rbsca,用能见度测量值转换得到Vbsca,二者具有较高的相关性(r2=0.84);但存在Vbsca的高值被低估,Vbsca的低值被高估的现象;特别是当Rbsca 1123 M m~(-1)(对应能见度约小于2.0 km)时,Vbsca的值被低估了17.6%.高浓度PM_(2.5)和高湿度对IMPROVE算法结果有显著的影响.  相似文献   

18.
利用2015年黄石市5个监测站点可吸入颗粒物(PM10)和细颗粒物(PM2.5)的在线监测数据和风向、风速、气温、气压等常规地面气象要素观测资料,分析了黄石市大气PM10和PM2.5的质量浓度水平分布特征及其与气象参数的关系。结果表明:2015年黄石市5个监测站点大气PM10和PM2.5年均浓度范围分别为95.8—108.6μg·m^-3和64.3—68.9μg·m^-3,均超过国家二级标准;季均质量浓度呈现显著的冬季高夏季低的变化规律,冬季PM10和PM2.5的质量浓度分别为(143.9±62.2)μg·m^-3和(95.5±44.5)μg·m^-3,夏季PM10和PM2.5的质量浓度分别为(75.2±24.0)μg·m^-3和(50.7±17.3)μg·m^-3。5个监测站中,下陆区、西塞山区和铁山区的PM10和PM2.5颗粒物污染较为严重;各站点大气PM10和PM2.5质量浓度显著相关。大气颗粒物浓度与气象因素的分析显示,黄石市大气颗粒物浓度与气温呈显著的负相关关系,与气压呈正相关关系,与风速和相对湿度的相关性不显著,受风向影响变化较大。  相似文献   

19.
城市近郊常受到城区污染物扩散和输送的影响,2010年7月21日至8月6日利用β射线颗粒物连续监测仪和黑碳仪对北京西北郊区PM2.5和黑碳气溶胶(BC)进行了连续观测。结果表明,北京西北郊区夏季PM2.5和BC的质量浓度分别是(133.16±81.64)、(2.89±1.62)μg/m3。受明显的山谷风的影响,来自观测点东南方的城区的气流使PM2.5和BC浓度升高,来自观测点西北方向的风则使PM2.5和BC浓度降低。受局地排放、区域输送和气象条件的共同影响,郊区的PM2.5和BC浓度表现出明显日变化特征,二者浓度在上午、傍晚和夜间显著上升。  相似文献   

20.
对中国中东部3个区域大气本底观测站2015年12月—2017年12月PM10质量浓度及其化学成分空间分布与季节变化特征进行研究,结果显示:研究期间龙凤山站、临安站和金沙站平均PM10质量浓度分别为57.5,62.2 μg·m-3和57.6 μg·m-3。其中临安站和金沙站2017年PM10质量浓度较2016年有所下降,但龙凤山站有所上升。与2013年相比,临安站和金沙站平均PM10质量浓度分别降低29.3%和26.2%。临安站SO42-,NO3-和NH4+平均质量浓度分别为9.9,8.2 μg·m-3和3.7 μg·m-3,金沙站分别为10.2,6.7 μg·m-3和2.6 μg·m-3,均高于龙凤山站的5.9,4.9 μg·m-3和2.1 μg·m-3,其中龙凤山站和临安站的NO3-与SO42-质量浓度比值较高(0.9和0.8),金沙站较低(0.6)。龙凤山站的有机碳(OC)和元素碳(EC)质量浓度分别为10.1 μg·m-3和2.7 μg·m-3,临安站为6.7 μg·m-3和3.1 μg·m-3,金沙站为4.7 μg·m-3和2.3 μg·m-3,即龙凤山站OC最高,金沙站最低,3个站点的EC基本相当,临安站略高。与2013年相比,研究期间临安站SO42-,NH4+和OC分别下降38.1%,26.0%和55.6%,金沙站分别下降46.3%,51.9%和44.7%,但临安站和金沙站的NO3-分别上升12.3%和15.5%;临安站EC下降27.9%,金沙站EC上升4.5%。3个站点夏季PM10,NO3-,EC质量浓度及NO3-与SO42-质量浓度比值均最低。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号