首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   38844篇
  免费   6334篇
  国内免费   9185篇
测绘学   3394篇
大气科学   4591篇
地球物理   6768篇
地质学   23741篇
海洋学   4278篇
天文学   3393篇
综合类   2424篇
自然地理   5774篇
  2024年   267篇
  2023年   714篇
  2022年   1408篇
  2021年   1605篇
  2020年   1463篇
  2019年   1803篇
  2018年   1306篇
  2017年   1565篇
  2016年   1605篇
  2015年   1751篇
  2014年   2191篇
  2013年   2183篇
  2012年   2347篇
  2011年   2426篇
  2010年   2111篇
  2009年   2655篇
  2008年   2653篇
  2007年   2660篇
  2006年   2575篇
  2005年   2446篇
  2004年   2133篇
  2003年   2069篇
  2002年   1795篇
  2001年   1585篇
  2000年   1603篇
  1999年   1437篇
  1998年   1209篇
  1997年   864篇
  1996年   745篇
  1995年   630篇
  1994年   601篇
  1993年   487篇
  1992年   349篇
  1991年   305篇
  1990年   210篇
  1989年   170篇
  1988年   144篇
  1987年   88篇
  1986年   44篇
  1985年   35篇
  1984年   19篇
  1983年   16篇
  1982年   11篇
  1981年   9篇
  1980年   8篇
  1979年   5篇
  1978年   15篇
  1977年   5篇
  1976年   4篇
  1954年   9篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
In this work, the factors controlling the formation and preservation of high-pressure mineral assemblages in the metamorphosed orthopyroxene-bearing metagranitoids of the Sandmata Complex, Aravalli-Delhi Mobile Belt (ADMB), northwestern India have been modelled. The rocks range in composition from farsundite through quartz mangerite to opdalite, and with varying K2O, Ca/(Ca + Na)rock and FeOtot + MgO contents. A two stage metamorphic evolution has been recorded in these rocks.
An early hydration event stabilized biotite with or without epidote at the expense of magmatic orthopyroxene and plagioclase. Subsequent high-pressure granulite facies metamorphism (∼15 kbar, ∼800 °C) of these hydrated rocks produced two rock types with contrasting mineralogy and textures. In the non-migmatitic metagranitoids, spectacular garnet ± K-feldspar ± quartz corona was formed around reacting biotite, plagioclase, quartz and/or pyroxene. In contrast, biotite ± epidote melting produced migmatites, containing porphyroblastic garnet incongruent solids and leucosomes.
Applying NCKFMASHTO T–M (H2O) and P–T pseudosection modelling techniques, it is demonstrated that the differential response of these magmatic rocks to high-pressure metamorphism is primarily controlled by the scale of initial hydration. Rocks, which were pervasively hydrated, produced garnetiferous migmatites, while for limited hydration, the same metamorphism formed sub-solidus garnet-bearing coronae. Based on the sequence of mineral assemblage evolution and the mineral compositional zoning features in the two metagranitoids, a clockwise metamorphic P–T path is constrained for the high-pressure metamorphic event. The finding has major implications in formulating geodynamic model of crustal amalgamation in the ADMB.  相似文献   
2.
3.
4.
5.
6.
We present an improved analytic calculation for the tidal radius of satellites and test our results against N -body simulations.
The tidal radius in general depends upon four factors: the potential of the host galaxy, the potential of the satellite, the orbit of the satellite and the orbit of the star within the satellite . We demonstrate that this last point is critical and suggest using three tidal radii to cover the range of orbits of stars within the satellite. In this way we show explicitly that prograde star orbits will be more easily stripped than radial orbits; while radial orbits are more easily stripped than retrograde ones. This result has previously been established by several authors numerically, but can now be understood analytically. For point mass, power-law (which includes the isothermal sphere), and a restricted class of split power-law potentials our solution is fully analytic. For more general potentials, we provide an equation which may be rapidly solved numerically.
Over short times (≲1–2 Gyr ∼1 satellite orbit), we find excellent agreement between our analytic and numerical models. Over longer times, star orbits within the satellite are transformed by the tidal field of the host galaxy. In a Hubble time, this causes a convergence of the three limiting tidal radii towards the prograde stripping radius. Beyond the prograde stripping radius, the velocity dispersion will be tangentially anisotropic.  相似文献   
7.
In many areas of engineering practice, applied loads are not uniformly distributed but often concentrated towards the centre of a foundation. Thus, loads are more realistically depicted as distributed as linearly varying or as parabola of revolution. Solutions for stresses in a transversely isotropic half‐space caused by concave and convex parabolic loads that act on a rectangle have not been derived. This work proposes analytical solutions for stresses in a transversely isotropic half‐space, induced by three‐dimensional, buried, linearly varying/uniform/parabolic rectangular loads. Load types include an upwardly and a downwardly linearly varying load, a uniform load, a concave and a convex parabolic load, all distributed over a rectangular area. These solutions are obtained by integrating the point load solutions in a Cartesian co‐ordinate system for a transversely isotropic half‐space. The buried depth, the dimensions of the loaded area, the type and degree of material anisotropy and the loading type for transversely isotropic half‐spaces influence the proposed solutions. An illustrative example is presented to elucidate the effect of the dimensions of the loaded area, the type and degree of rock anisotropy, and the type of loading on the vertical stress in the isotropic/transversely isotropic rocks subjected to a linearly varying/uniform/parabolic rectangular load. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   
8.
9.
In the article the author looks back the hard development course and great progress in earth quake science and technology in China during the last near a half of century and expounds the following 3 aspects: (1) The strong desire of the whole society to mitigate seismic disasters and reduce the effect of earthquakes on social-economic live is a great driving force to push forward the development of earthquake science and technology in China; (2) To better ensure people‘ s life and property, sustainable economic development, and social stability is an essential purpose to drive the development of earthquake science and technology in China; and (3) To insist on the dialectical connection of setup of technical system for seismic monitoring with the scientific research of earthquakes and to better handle the relation between crucial task, current scientif ic level, and the feasibility are the important principles to advance the earthquake science and technology in China. Some success and many setbacks in earthquake disaster mitigation consistently enrich our knowledge regarding the complexity of the conditions for earthquake occurrence and the process of earthquake preparation, promote the reconstruction and modernization of technical system for earthquake monitoring, and deepen the scientific research of earthquakes. During the last 5 years, the improvement and modernization of technical system for earthquake monitoring have clearly provided the technical support to study and practice of earthquake prediction and pre caution, give prominence to key problems and broaden the field of scientific research of earth quakes. These have enabled us to get some new recognition of the conditions for earthquake oc currence and process of earthquake preparation, characteristics of seismic disaster, and mecha nism for earthquake generation in China‘s continent. The progress we have made not only en courages us to enhance the effectiveness of earthquake disaster mitigation, but also provides a basis for accelerating further development of earthquake science and technology in China in the new century, especially in the 10th five-year plan. Based on the history reviewed, the author sets forth a general requirement for develop ment of earthquake science and technology in China and brings out 10 aspects to be stressed and strengthened at present and in the future. These are: upgrade and setup of the network of digitized seismic observation; upgrade and setup of the network for observation of seismic pre cursors; setup of the network for observation of strong motion; setup of the laboratories for ex periment on seismic regime; establishment of technical system for seismic information, emer gency command and urgent rescue; research on short-term and imminent earthquake predic tion; research on intermediate- and long-term earthquake prediction; research on attenuation of seismic ground motion, mechanism for seismic disaster, and control on seismic disaster; ba sic research fields related to seismology and geoscience. We expect that these efforts will signifi cantly elevate the level of earthquake science and technology in China to the advanced interna tional level, improve theories, techniques, and methods for earthquake precaution and predic tion, and enhance the effectiveness of earthquake disaster mitigation.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号