首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3089篇
  免费   413篇
  国内免费   560篇
测绘学   528篇
大气科学   1076篇
地球物理   553篇
地质学   697篇
海洋学   104篇
天文学   21篇
综合类   190篇
自然地理   893篇
  2024年   20篇
  2023年   45篇
  2022年   105篇
  2021年   129篇
  2020年   179篇
  2019年   161篇
  2018年   133篇
  2017年   197篇
  2016年   200篇
  2015年   215篇
  2014年   220篇
  2013年   288篇
  2012年   208篇
  2011年   207篇
  2010年   171篇
  2009年   208篇
  2008年   177篇
  2007年   165篇
  2006年   141篇
  2005年   124篇
  2004年   125篇
  2003年   95篇
  2002年   77篇
  2001年   84篇
  2000年   70篇
  1999年   47篇
  1998年   47篇
  1997年   35篇
  1996年   34篇
  1995年   35篇
  1994年   20篇
  1993年   17篇
  1992年   34篇
  1991年   6篇
  1990年   11篇
  1989年   7篇
  1988年   14篇
  1987年   5篇
  1986年   2篇
  1984年   1篇
  1983年   1篇
  1976年   2篇
排序方式: 共有4062条查询结果,搜索用时 15 毫秒
1.
The magnitude and spatial distribution of snow on sea ice are both integral components of the ocean–sea‐ice–atmosphere system. Although there exists a number of algorithms to estimate the snow water equivalent (SWE) on terrestrial surfaces, to date there is no precise method to estimate SWE on sea ice. Physical snow properties and in situ microwave radiometry at 19, 37 and 85 GHz, V and H polarization were collected for a 10‐day period over 20 first‐year sea ice sites. We present and compare the in situ physical, electrical and microwave emission properties of snow over smooth Arctic first‐year sea ice for 19 of the 20 sites sampled. Physical processes creating the observed vertical patterns in the physical and electrical properties are discussed. An algorithm is then developed from the relationship between the SWE and the brightness temperature measured at 37 GHz (55°) H polarization and the air temperature. The multiple regression between these variables is able to account for over 90% of the variability in the measured SWE. This algorithm is validated with a small in situ data set collected during the 1999 field experiment. We then compare our data against the NASA snow thickness algorithm, designed as part of the NASA Earth Enterprise Program. The results indicated a lack of agreement between the NASA algorithm and the algorithm developed here. This lack of agreement is attributed to differences in scale between the Special Sensor Microwave/Imager and surface radiometers and to differences in the Antarctic versus Arctic snow physical and electrical properties. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
2.
In 1903 the Swiss Federal Research Institute WSL started its first forest hydrology measurements with the aim to deliver a sound scientific basis for the implementation of new forest legislation introduced in Switzerland in 1876. This legislation was triggered by several large floods that occurred in Switzerland, for which a major cause was widely seen as the poor condition of forests at that time. Consequently, hydrologic research at WSL first focused on the influence of forests on floods. In the second half of the 20th century, other hydrological issues such as water quality, snow hydrology and sediment transport complemented the hydrologic research at WSL. Some recent results of this work are presented in three papers joining this introductory paper to mark the 100th anniversary of hydrologic research at WSL. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
3.
A one‐dimensional thermodynamic model for simulating lake‐ice phenology is presented and evaluated. The model can be driven with observed daily or hourly atmospheric forcing of air temperature, relative humidity, wind speed, cloud amount and snowfall. In addition to computing the energy balance components, key model output includes the temperature profile at an arbitrary number of levels within the ice/snow (or the water temperature if there is no ice) and ice thickness (clear ice and snow‐ice) on a daily basis, as well as freeze‐up and break‐up dates. The lake‐ice model is used to simulate ice‐growth processes on shallow lakes in arctic, sub‐arctic, and high‐boreal forest environments. Model output is compared with field and remote sensing observations gathered over several ice seasons. Simulated ice thickness, including snow‐ice formation, compares favourably with field measurements. Ice‐on and ice‐off dates are also well simulated when compared with field and satellite observations, with a mean absolute difference of 2 days. Model simulations and observations illustrate the key role that snow cover plays on the seasonal evolution of ice thickness and the timing of spring break‐up. It is also shown that lake morphometry, depth in particular, is a determinant of ice‐off dates for shallow lakes at high latitudes. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
4.
Continuous wavelet analyses of hourly time series of air temperature, stream discharge, and precipitation are used to compare the seasonal and inter‐annual variability in hydrological regimes of the two principal streams feeding Bow Lake, Banff National Park, Alberta: the glacial stream draining the Wapta Icefields, and the snowmelt‐fed Bow River. The goal is to understand how water sources and flow routing differ between the two catchments. Wavelet spectra and cross‐wavelet spectra were determined for air temperature and discharge from the two streams for summers (June–September) 1997–2000, and for rainfall and discharge for the summers of 1999 and 2000. The diurnal signal of the glacial runoff was orders of magnitude higher in 1998 than in other years, indicating that significant ice exposure and the development of channelized glacial drainage occurred as a result of the 1997–98 El Niño conditions. Early retreat of the snowpack in 1997 and 1998 led to a significant summer‐long input of melt runoff from a small area of ice cover in the Bow River catchment; but such inputs were not apparent in 1999 and 2000, when snow cover was more extensive. Rainfall had a stronger influence on runoff and followed quicker flow paths in the Bow River catchment than in the glacial catchment. Snowpack thickness and catchment size were the primary controls on the phase relationship between temperature and discharge at diurnal time scales. Wavelet analysis is a fast and effective means to characterize runoff, temperature, and precipitation regimes and their interrelationships and inter‐annual variability. The technique is effective at identifying inter‐annual and seasonal changes in the relative contributions of different water sources to runoff, and changes in the time required for routing of diurnal meltwater pulses through a catchment. However, it is less effective at identifying changes/differences in the type of the flow routing (e.g. overland flow versus through flow) between or within catchments. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
5.
For ecosystem modelling of the Boreal forest it is important to include processes associated with low soil temperature during spring‐early summer, as these affect the tree water uptake. The COUP model, a physically based SVAT model, was tested with 2 years of soil and snow physical measurements and sap flow measurements in a 70‐year‐old Scots pine stand in the boreal zone of northern Sweden. During the first year the extent and duration of soil frost was manipulated in the field. The model was successful in reproducing the timing of the soil warming after the snowmelt and frost thaw. A delayed soil warming, into the growing season, severely reduced the transpiration. We demonstrated the potential for considerable overestimation of transpiration by the model if the reduction of the trees' capacity to transpire due to low soil temperatures is not taken into account. We also demonstrated that the accumulated effect of aboveground conditions could be included when simulating the relationship between soil temperature and tree water uptake. This improved the estimated transpiration for the control plot and when soil warming was delayed into the growing season. The study illustrates the need of including antecedent conditions on root growth in the model in order to catch these effects on transpiration. The COUP model is a promising tool for predicting transpiration in high‐latitude stands. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
6.
7.
通过野外调查,在收集统计大量基础地质、经济地质、环境地质、旅游地质、农(林)业地质等数据信息的基础上,在GIS技术指导下,采用定量定性相结合的半定量分析评价方法,对森林浅覆盖区生态地质现状及各类资源的开发利用潜力进行了综合评价。在研究和探讨森林浅覆盖区生态地质综合评价方法的基础上,提出了森林浅覆盖区生态地质评价模型,确定了综合参数,划分了生态地质类型。  相似文献   
8.
利用NOAA AVHRR数据研究北半球雪盖气候学特征   总被引:2,自引:0,他引:2  
利用NOAA卫星图像,研究了北半球、欧亚、北美和青藏高原雪盖气候学特征及其变化趋势.指出北半球、欧亚和北美雪盖气候变化趋势基本一致,年均雪盖面积在1987年前后明显下降; 而青藏高原雪盖面积在1984年后明显下降,说明青藏高原雪盖的年际变化与北半球及欧亚、北美不完全一致.  相似文献   
9.
Cultivation, overgrazing, and overharvesting are seriously degrading forest and grassland ecosystems in the Taurus Mountains of the southern Mediterranean region of Turkey. This study investigated the effects of changes on soil organic carbon (SOC) content and other physical soil properties over a 12-year period in three adjacent ecosystems in a Mediterranean plateau. The ecosystems were cropland (converted from grasslands in 1990), open forest, and grassland. Soil samples from two depths, 0–10 and 10–20 cm, were collected for chemical and physical analyses at each of cropland, open forest, and grassland ecosystems. SOC pools at the 0–20 cm depth of cropland, forest, and grassland ecosystems were estimated at 32,636, 56,480, and 57,317 kg ha−1, respectively. Conversion of grassland into cropland during the 12-year period increased the bulk density by 10.5% and soil erodibility by 46.2%; it decreased SOM by 48.8%, SOC content by 43%, available water capacity (AWC) by 30.5%, and total porosity by 9.1% for the 0–20 cm soil depth (p<0.001). The correlation matrix revealed that SOC content was positively correlated with AWC, total porosity, mean weight diameter (MWD), forest, and grassland, and negatively with bulk density, pH, soil erodibility factor, and cropland. The multiple regression (MLR) models indicated that any two of the three ecosystems and one of the two soil depths accounted for 86.5% of variation in mean SOC values ((p<0.001).  相似文献   
10.
2003年2月22日塔城市出现一次暴雪天气过程。文章着重分析了此次天气过程的高空环流形势、地面形势、T—Td等,指出暖湿气流是造成暴雪的主要原因。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号