首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17篇
  免费   0篇
大气科学   2篇
地球物理   1篇
地质学   3篇
海洋学   2篇
天文学   9篇
  2013年   2篇
  2009年   3篇
  2008年   3篇
  2006年   2篇
  2005年   2篇
  2003年   1篇
  2002年   1篇
  2001年   3篇
排序方式: 共有17条查询结果,搜索用时 15 毫秒
1.
2.
The mean metallicity of the Milky Way thin disc in the solar neighbourhood is still a matter of debate, and we recently proposed an upward revision. Our star sample was drawn from a set of solar neighbourhood dwarfs with photometric metallicities. In a very recent study, it has been suggested that our metallicity calibration, based on Geneva photometry, is biased. We show here that the effect detected is not a consequence of our adopted metallicity scale, and we confirm that our findings are robust. On the contrary, the application to Strömgren photometry of the Schuster & Nissen metallicity scale is problematic. Systematic discrepancies of  ∼0.1–0.3 dex  affect the photometric metallicity determination of metal-rich stars, on the colour interval  0.22 < b − y < 0.59  , i.e. including F and G stars. For F stars, it is shown that this is a consequence of a mismatch between the standard sequence   m 1( b − y )  of the Hyades used by Schuster & Nissen to calibrate their metallicity scale, and the system of Olsen. It means that although the calibration of Schuster & Nissen and Olsen's photometry are intrinsically correct, they are mutually incompatible for metal-rich F-type stars. For G stars, the discrepancy is most probably the continuation of the same problem, albeit worsened by the lack of spectroscopic calibrating stars. A corrected calibration is proposed that renders the calibration of Schuster & Nissen applicable to the catalogues of Olsen. We also give a simpler calibration referenced to the Hyades sequence, valid over the same colour and metallicity ranges.  相似文献   
3.
4.
5.
On summing the components of radiative forcing of climate change   总被引:1,自引:0,他引:1  
 Radiative forcing is a useful concept in determining the potential influence of a particular mechanism of climate change. However, due to the increased number of forcing agents identified over the past decade, the total radiative forcing is difficult to assess. By assigning a range of probability distribution functions to the individual radiative forcings and using a Monte-Carlo approach, we estimate the total radiative forcing since pre-industrial times including all quantitative radiative forcing estimates to date. The resulting total radiative forcing has a 75–97% probability of being positive (or similarly a 3–25% probability of being negative), with mean radiative forcing ranging from +0.68 to +1.34 W m−2, and median radiative forcing ranging from +0.94 to +1.39 W m−2. Received: 14 March 2001 / Accepted: 1 June 2001  相似文献   
6.
The analysis of the kinematics of solar neighbourhood stars shows that the low- and high-metallicity tails of the thin disc are populated by objects which orbital properties suggest an origin in the outer and inner Galactic disc, respectively. Signatures of radial migration are identified in various recent samples, and are shown to be responsible for the high-metallicity dispersion in the age–metallicity distribution. Most importantly, it is shown that the population of low-metallicity wanderers of the thin disc (−0.7 < [Fe/H] < −0.3 dex) is also responsible for the apparent hiatus in metallicity with the thick disc (which terminal metallicity is about −0.2 dex). It implies that the thin disc at the solar circle has started to form stars at about this same metallicity. This is also consistent with the fact that 'transition' objects, which have α-element abundance intermediate between that of the thick and thin discs, are found in the range [−0.4, −0.2] dex. Once the metal-poor thin disc stars are recognized for what they are – wanderers from the outer thin disc – the parenthood between the two discs can be identified on stars genuinely formed at the solar circle through an evolutionary sequence in [α/Fe] and [Fe/H]. Another consequence is that stars that can be considered as truly resulting of the chemical evolution at the solar circle have a metallicity restricted to about [−0.2, +0.2] dex, confirming an old idea that most chemical evolution in the Milky Way have preceded the thin disc formation.  相似文献   
7.
A raphidophyte‐dominated phytoplankton bloom extended discontinuously along the northeastern coastline of New Zealand, from Bream Tail, north of Leigh, to the western coast of the Coromandel Peninsula from late August until December 1992. The bloom was associated with an “El‐Niño” phase of the Southern Oscillation, resulting in unusually cold sea temperatures. The dominant bloom species in the north was Fibrocapsa japonica and in the south Heterosigma akashiwo. Associated species included the coccolithophorid Gephyrocapsa oceanica and the naked form of the silicoflagellate Dictyocha speculum. By December, numbers of the armoured form of D. speculum had increased, as those of raphidophytes and coccolithophorids declined. Bioassays to test for shellfish biotoxins were negative and Artemia salina bioassays, indicators of ichthyotoxicity, were negative except for Heterosigma akashiwo cultures, isolated from Coromandel water samples.  相似文献   
8.
We present a revised metallicity distribution of dwarfs in the solar neighbourhood. This distribution is centred on solar metallicity. We show that previous metallicity distributions, selected on the basis of spectral type, are biased against stars with solar metallicity or higher. A selection of G-dwarf stars is inherently biased against metal-rich stars and is not representative of the solar neighbourhood metallicity distribution. Using a sample selected on colour, we obtain a distribution where approximately half the stars in the solar neighbourhood have metallicities higher than [Fe/H]=0 . The percentage of mid-metal-poor stars ([Fe/H]<−0.5) is approximately 4 per cent, in agreement with present estimates of the thick disc.
In order to have a metallicity distribution comparable to chemical evolution model predictions, we convert the star fraction to mass fraction, and show that another bias against metal-rich stars affects dwarf metallicity distributions, due to the colour (or spectral type) limits of the samples. Reconsidering the corrections resulting from the increasing thickness of the stellar disc with age, we show that the simple closed-box model with no instantaneous recycling approximation gives a reasonable fit to the observed distribution. Comparisons with the age–metallicity relation and abundance ratios suggest that the simple closed-box model may be a viable model of the chemical evolution of the Galaxy at solar radius.  相似文献   
9.
The climate of the future: clues from three million years ago   总被引:1,自引:0,他引:1  
In the eighteenth century, James Hutton came up with a theory that revolutionized the science of geology, ‘The present is a key to the past’. But could the past also be a guide to our future? The world three million years ago was warmer than present. What might it tell us about global climate change in the near future?  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号