首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   1篇
地球物理   3篇
地质学   5篇
海洋学   1篇
综合类   2篇
  2018年   1篇
  2016年   2篇
  2006年   1篇
  2005年   4篇
  2003年   1篇
  1997年   1篇
  1992年   1篇
排序方式: 共有11条查询结果,搜索用时 431 毫秒
1.
Yong-Jiang  Liu  Franz  Neubauer  Johann  Genser  Akira  Takasu  Xiao-Hong  Ge Robert  Handler 《Island Arc》2006,15(1):187-198
Abstract   Pelitic schists from Qingshuigou in the Northern Qilian Mountains of China contain mainly glaucophane, garnet, white mica, clinozoisite, chlorite and piemontite. Isotopic age dating of these schists provides new constraints on the formation of the high-grade blueschists at Qingshuigou. White mica 40Ar/39Ar ages range from 442.1 to 447.5 Ma (total fusion age of single grain) and from 445.7 to 453.9 Ma (integrated age of white mica concentrates). These ages (442.1–453.9 Ma) represent the peak metamorphic ages or cooling ages of the blueschists during exhumation shortly after peak metamorphism. The 40Ar/39Ar dates in the present study are similar to ages previously reported for eclogites and blueschists in the area; this suggests that both the eclogites and pelitic sediments underwent high-grade metamorphism during the same subduction event. From this chronological evidence and the presence of well-developed Silurian remnant-sea flysch and Devonian molasse, it is concluded that the Northern Qilian Ocean had closed by the end of the Ordovician, and rapid orogenic uplift followed in the Devonian.  相似文献   
2.
Kabir  Md. Fazle  Takasu  Akira  Li  Weimin 《Mineralogy and Petrology》2018,112(6):819-836
Mineralogy and Petrology - In the Gotsu area of the c. 200 Ma high-P/T Suo metamorphic belt in the Inner Zone of southwest Japan, blueschists occur as lenses or layers within pelitic...  相似文献   
3.
Based on almost all available published age data, the protolith ages, peak metamorphic ages and cooling rate of the Sambagawa metamorphic belt have been discussed and the latest constraints on the ages of the Sambagawa metamorphism and subduction-related accretionary evolutions were summarized. Peak metamorphic conditions attained within the Kuma nappe complex at ca. 145~185 Ma, and uplift through ca. 500℃ at ca. 150 Ma and 350~400℃ at ca. 110~ 115 Ma. The protolith sediments of the Besshi nappe complex were accumulated and subsequently progressively subducted and suffered high P-T prograde metamorphism during the Kuma nappe complex uplifting. The Besshi nappe complex arrived maximum metamorphic conditions at ca. 110 ~ 120 Ma and subsequently started rapid uplift with the cooling rate of ca. 14.2℃/Ma at ca. 75 ~85 Ma, followed with the cooling rate of ca. 6.0 ~8.9℃/Ma. The Oboke nappe complex started subduction later than other tectonic units and arrived the peak metamorphic conditions at ca. 75 Ma, which followed by the uplift with a cooling rate of ca. 8℃/Ma.  相似文献   
4.
Based on almost all available published age data, the protolith ages, peak metamorphic ages and cooling rate of the Sambagawa metamorphic belt have been discussed and the latest constraints on the ages of the Sambagawa metamorphism and subduction-related accretionary evolutions were summarized. Peak metamorphic conditions attained within the Kuma nappe complex at ca. 145-185 Ma, and uplift through ca. 500℃at ca. 150 Ma and 350-400癈 at ca. 110 -115 Ma. The protolith sediments of the Besshi nappe complex were accumulated and subsequently progressively subducted and suffered high P-T prograde metamorphism during the Kuma nappe complex uplifting. The Besshi nappe complex arrived maximum metamorphic conditions at ca. 110- 120 Ma and subsequently started rapid uplift with the cooling rate of ca. 14.2℃/Ma at ca. 75 -85 Ma, followed with the cooling rate of ca. 6.0-8.9℃/Ma. The Oboke nappe complex started subduction later than other tectonic units and arrived the peak metamorphic conditions at ca. 75 Ma, which followed by the uplift with a cooling rate of ca. 8℃/Ma.  相似文献   
5.
40Ar/39Ar dating and estimates of regional metamorphic PT conditions were carried out on the basement rocks of the Eastern Kunlun Mountains, Western China. Samples from the Jinshuikou, Xiaomiao, Kuhai, Wanbaogou, and Nachitai groups revealed distinct metamorphic events and four age groups. The age group in the range from 363 to 439 Ma is interpreted to represent cooling after Middle Silurian–Late Devonian granulite(?) and amphibolite facies metamorphism, which is dominated by low–middle pressure/high temperature conditions. This tectono-thermal event is related to the closure of an oceanic basin or marginal sea. An age group of 212–242 Ma represents cooling after Triassic metamorphic overprint, which is probably associated with magmatic intrusions. This thermal event, together with the Permo-Triassic ophiolite zone along the South Kunlun Fault, relates to the closure of a major ocean (between India and Eurasia) and the eventual N-ward accretion of the Qiangtang block in Permo-Triassic times. The significance of the age group of 104–172 Ma may be related to the ductile deformation along the Xidatan fault due to the northward-directed accretion of the Lhasa block. Biotites from Nachitai record a partial isotopic resetting at ca. 32 Ma that is interpreted to represent a late-stage exhumation caused by further crustal shortening.  相似文献   
6.
Yasuo  Miyagi  Akira  Takasu 《Island Arc》2005,14(3):215-235
Abstract   Prograde eclogites occur in the Tonaru epidote amphibolite mass in the Sambagawa Metamorphic Belt of central Shikoku. The Tonaru mass is considered to be a metamorphosed layered gabbro, and occurs as a large tectonic block (approximately 6.5 km × 1 km) in a high-grade portion of the Sambagawa schists. The Tonaru mass experienced high- P /low- T prograde metamorphism from the epidote-blueschist facies to the eclogite facies prior to its emplacement into the Sambagawa schists. The estimated P – T conditions are T  = 300–450°C and P  = 0.7–1.1 GPa for the epidote-blueschist facies, and the peak P – T conditions for the eclogite facies are T  = 700–730°C and P  ≥ 1.5 GPa. Following the eclogite facies metamorphism, the Tonaru mass was retrograded to the epidote amphibolite facies. It subsequently underwent additional prograde Sambagawa metamorphism, together with the surrounding Sambagawa schists, until the conditions of the oligoclase–biotite zone were reached. The high- P /low- T prograde metamorphism of the eclogite facies in the Tonaru mass and other tectonic blocks show similar steep d P /d T geothermal gradients despite their diverse peak P – T conditions, suggesting that these tectonic blocks reached different depths in the subduction zone. The individual rocks in each metamorphic zone of the Sambagawa schists also recorded steep d P /d T geothermal gradients during the early stages of the Sambagawa prograde metamorphism, and these gradients are similar to those of the eclogite-bearing tectonic blocks. Therefore, the eclogite-bearing tectonic blocks reached greater depths in the subduction zone than the Sambagawa schists. All the tectonic blocks were ultimately emplaced into the hanging wall side of the later-subducted Sambagawa high-grade schists during their exhumation.  相似文献   
7.
Eclogite facies metamorphic rocks have been discovered from the Bizan area of eastern Shikoku, Sambagawa metamorphic belt. The eclogitic jadeite–garnet glaucophane schists occur as lenticular or sheet‐like bodies in the pelitic schist matrix, with the peak mineral assemblage of garnet + glaucophane + jadeite + phengite + quartz. The jadeitic clinopyroxene (XJd 0.46–0.75) is found exclusively as inclusions in porphyroblastic garnet. The eclogite metamorphism is characterized by prograde development from epidote–blueschist to eclogite facies. Metamorphic P–T conditions estimated using pseudosection modelling are 580–600 °C and 18–20 kbar for eclogite facies. Compared with common mafic eclogites, the jadeite–garnet glaucophane schists have low CaO (4.4–4.5 wt%) and MgO (2.1–2.3 wt%) bulk‐rock compositions. The P–T– pseudosections show that low XCa bulk‐rock compositions favour the appearance of jadeite instead of omphacite under eclogite facies conditions. This is a unique example of low XCa bulk‐rock composition triggered to form jadeite at eclogite facies conditions. Two significant types of eclogitic metamorphism have been distinguished in the Sambagawa metamorphic belt, that is, a low‐T type and subsequent high‐T type eclogitic metamorphic events. The jadeite–garnet glaucophane schists experienced low‐T type eclogite facies metamorphism, and the P–T path is similar to lawsonite‐bearing eclogites recently reported from the Kotsu area in eastern Shikoku. During subduction of the oceanic plate (Izanagi plate), the hangingwall cooled gradually, and the geothermal gradient along the subduction zone progressively decreased and formed low‐T type eclogitic metamorphic rocks. A subsequent warm subduction event associated with an approaching spreading ridge caused the high‐T type eclogitic metamorphism within a single subduction zone.  相似文献   
8.
Abstract The Himalaya is a fold-and-thrust wedge formed along the northern margin of the Indian continent, and consists of three thrust-bounded lithotectonic units; the Sub-Himalaya, the Lesser Himalaya, and the Higher Himalaya with the overlying Tethys Himalaya from south to north, respectively. The orogen-scale, intracrustal thrusts which bound the above lithotectonic units are splays off an underlying subhorizontal dkcollement, and show a southward propagating piggy-back sequence with an out-of-sequence thrust. Among these thrusts, the Main Central Thrust zone (MCT zone) has played a major role in Himalayan tectonics. The MCT zone represents a shear zone which has accommodated southward thrusting of the Higher Himalayan crystalline thrust sheet over the Lesser Himalayan sequence for ~140 km. The Kathmandu Nappe in central Nepal has been transported over the Lesser Himalayan metasediments along the MCT zone, and is locally separated from the Higher Himalayan thrust sheet in the north by an out-of-sequence thrust. 40Ar/39Ar ages have been determined for one whole-rock phyllite and six muscovite concentrates from metasedimenta-ry rocks and variably deformed granites in the Kathmandu Nappe. These ages range from 44 Ma to 14 Ma, and suggest a record of both Eo-Himalayan (Eocene) and Neo-Himalayan (Miocene) tectonothermal events in the Tertiary Himalayan orogeny. The Miocene event was associated with translation along the MCT zone. No tectonothermal event of the Late Miocene to Early Pliocene ages have been reported near the MCT zone in southern Lesser Himalayan crystalline nappe or klippe, although such events have been documented within and around the MCT zone in the northern root zone of the Higher Himalaya. This suggests that out-of-sequence thrusting may have occurred between 14 Ma and 5 Ma, probably during the period 10-7.5 Ma. Since then the frontal MCT zone below the Kathmandu Nappe has been inactive, but the MCT zone in the northern root zone has remained active. The rapid increase in denudation rates of the Higher Himalaya since the Late Miocene may have been caused by ramping along the out-of-sequence thrust at depth.  相似文献   
9.
Late Pennsylvanian sedimentary rocks in the Narragansett basin were metamorphosed (lower anchizone to sillimanite grade) during late Paleozoic regional metamorphism at ca. 275–280 Ma. Twenty-five variably sized concentrates of detrital muscovite were prepared from samples collected within contrasting low-grade areas (diagenesis — lower greenschist facies). Microprobe analyses suggest that the constituent detrital grains are not chemically internally zoned; however, some grains within several concentrates display very narrow (<25 m), compositionally distinct, low-grade, epitaxial peripheral overgrowths. Detrital muscovite concentrates from the lower anchizone are characterized by internally concordant 40Ar/39Ar age spectra which define plateau ages of ca. 350–360 Ma. These are interpreted to date post-Devonian (Acadian) cooling within proximal source areas. Concentrates from lower grade sectors of the middle anchizone display slightly discordant spectra in which apparent ages systematically increase from ca. 250–275 Ma to define intermediate- and high-temperature plateaus of ca. 360–400 Ma. Detrital muscovite within samples from higher grade sectors of the middle anchizone and the upper anchizone are characterized by systematic low age discordance throughout both low-and intermediate-temperature increments. High-temperature ages only range up to ca. 330 Ma. Six size fractions of detrital muscovite from a sample collected within the lower greenschist facies have similarly discordant spectra, in which, apparent ages increase slightly throughout the analyses from ca. 250 Ma to 275 Ma. The detrital muscovite results are interpreted to reflect variable affects of late Paleozoic regional metamorphism. However, it is uncertain to what extent the systematic low age spectra discordance reflects intracrystalline gradients in the concentration of 40Ar and/or experimental evolution of gas from relatively non-retentive epitaxial overgrowths. However, low age discordance occurs regardless of the extent of epitaxial overgrowth. Intermediate-temperature increments evolved during 40Ar/39Ar whole-rock analyses of five slate/phyllite samples are characterized by internally consistent apparent K/Ca ratios. These are attributed to gas evolved from constituent, very fine-grained white mica. Samples from lower grade portions of the middle anchizone are characterized by intermediate-temperature apparent ages which systematically increase from ca. 275–300 Ma to ca. 360–375 Ma before evolution of a high-temperature contribution from detrital plagioclase feldspar. This age variation may reflect partial late Paleozoic rejuvenation of very fine-grained detrital material with a source age similar to that for the detrital muscovites. Slate/phyllite samples from upper sectors of the middle anchizone and from the upper anchizone were completely rejuvenated during late Paleozoic metamorphism and record intermediate-and high-temperature plateau ages of ca. 270–290 Ma. These data document that metamorphic conditions of the lower to middle biotite zone (ca. 325–350 °C) are required to completely rejuvenate intracrystalline argon systems of detrital muscovite. Therefore, the 40Ar/39Ar dating method may be useful in determination of detrital muscovite provenance and in resolution of the metamorphic evolution of low-grade terranes.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号