首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
地球物理   2篇
地质学   5篇
海洋学   1篇
  2008年   2篇
  2006年   2篇
  2004年   1篇
  2000年   1篇
  1998年   1篇
  1997年   1篇
排序方式: 共有8条查询结果,搜索用时 125 毫秒
1
1.
Deep‐sea hydrothermal vents are unique light‐independent ecosystems that are sustained by chemosynthetic bacteria. For many of the invertebrates inhabiting in such environments, bacteria play essential roles in both energy acquisition and detoxification of potentially toxic gases such as H2S. In this study, the bacterial flora present on the gills of Alvinocaris longirostris (Bresiliidae: Caridea), a shrimp inhabiting hydrothermal vents (1532 m depth) at the Hatoma Knoll of the Okinawa Trough, was investigated. Bacterial 16S rDNA fragments were successfully amplified from the gills and 70% of these fragments showed an identical pattern in the restriction fragment length polymorphism analysis. These fragments were assigned to the ribotype AL‐1. Phylogenetic analyses suggest that AL‐1 forms a monophyletic clade with Sulfurovum spp. (ε‐Proteobacteria). Fluorescence in situ hybridization for AL‐1 and electron microscopy showed the presence of short‐rod bacteria lining up on the cuticular layer of the surface of the gill filaments. These results suggest that bacterial association with gills also occurs in bresiliid shrimps.  相似文献   
2.
Abstract   Thick Middle (–Upper) Miocene turbiditic deposits filled very deep and narrow foredeep basins formed in the western margin of the Hidaka collision zone in central Hokkaido. Cobble- to boulder-sized clasts of eight monzogranites and a single granodiorite in the Kawabata Formation in the Yubari Mountains area yielded biotite K–Ar ages of 44.4 ± 1.0 to 45.4 ± 1.0 Ma and 42.8 ± 1.1 Ma, respectively. Major elemental compositions of the clasts all fall in the field of S-type granite on an NK/A (Na2O + K2O/Al2O3 in molecule) versus A/CNK (Al2O3/CaO + Na2O + K2O in molecule) diagram, verifying their peraluminous granite character (aluminium saturation index (ASI): 1.12–1.19). These geochronological and petrographical features indicate that the granitoid clasts in the Kawabata Formation correlate with Eocene granitic plutons in the northeastern Hidaka Belt, specifically the Uttsudake (43 Ma) and Monbetsu (42 Ma) plutons. Foredeep basins are flexural depressions developed at the frontal side of thickened thrust wedges. The results presented here suggest that deposition of the Middle Miocene turbidites was coeval with rapid westward up-thrusting and exhumation of the Hidaka Belt. This early mountain building may have occurred in response to thrusting in the Tertiary fold-and-thrust system of central Hokkaido.  相似文献   
3.
The Lesser Himalayan low- to medium-grade metamorphic rocks in central Nepal are rich in K-white micas occurring as porphyroclasts and in matrix defining S1 and S2. Porphyroclasts are usually zoned with celadonite-poor cores and celadonite-rich rims. The cores are the relics of igneous or high grade metamorphic muscovites, and the rims were re-equilibrated or overgrown under lower T metamorphic conditions. The matrix K-white micas defining S1, pre-dating the Main Central Thrust activity, are generally celadonite-rich. They show heterogeneous compositional zoning with celadonite-rich cores and celadonite-poor rims. They were recrystallized at lower T condition prior to the Main Central Thrust activity, most probably prior to the India–Asia collision (pre-Himalayan metamorphism). The matrix K-white micas along S2, synchronous to the Main Central Thrust activity (Neohimalayan metamorphism), are relatively celadonite-poor and were recrystallized under relatively higher T condition. K-white micas defining S1 also were partially re-equilibrated during the Neohimalayan metamorphism. The average compositions of recrystallized K-white micas defining both S1 and S2 become gradually poor in (Fe + Mg)- and Si-contents and rich in Al- and Ti-contents from south to north showing an increase of metamorphic grade from structurally lower to higher parts in the Lesser Himalaya. This shows that the metamorphism is inverted throughout the inner Lesser Himalaya. The tectono-metamorphic significance of the published K–Ar and 40Ar / 39Ar K-white micas ages from the Lesser Himalaya need re-evaluation in the context of observed intrasample compositional variation and zoning, and possible higher closure temperature (500 °C) for K–Ar system.  相似文献   
4.
MAIN CENTRAL THRUST ZONE IN THE KATHMANDU AREA, CENTRAL NEPAL, AND ITS TECTONIC SIGNIFICANCE1 AritaK ,LallmeyerRD ,TakasuA .TectonothermalevolutionoftheLesserHimalaya ,Nepal:constraintsfrom 4 0 Ar/3 9AragesfromtheKathmandunappe[J].TheIslandArc ,1997,6 :372~ 384. 2 RaiSM ,GuillotS ,LeFortP ,etal.Pressure temperatureevolutionintheKathmanduandGosainkundregions ,CentralNepal[J].JourAsianEarthSci ,1998,16 :2 83~ 2 98. 3 SchellingD ,KArita .…  相似文献   
5.
Abstract The Himalaya is a fold-and-thrust wedge formed along the northern margin of the Indian continent, and consists of three thrust-bounded lithotectonic units; the Sub-Himalaya, the Lesser Himalaya, and the Higher Himalaya with the overlying Tethys Himalaya from south to north, respectively. The orogen-scale, intracrustal thrusts which bound the above lithotectonic units are splays off an underlying subhorizontal dkcollement, and show a southward propagating piggy-back sequence with an out-of-sequence thrust. Among these thrusts, the Main Central Thrust zone (MCT zone) has played a major role in Himalayan tectonics. The MCT zone represents a shear zone which has accommodated southward thrusting of the Higher Himalayan crystalline thrust sheet over the Lesser Himalayan sequence for ~140 km. The Kathmandu Nappe in central Nepal has been transported over the Lesser Himalayan metasediments along the MCT zone, and is locally separated from the Higher Himalayan thrust sheet in the north by an out-of-sequence thrust. 40Ar/39Ar ages have been determined for one whole-rock phyllite and six muscovite concentrates from metasedimenta-ry rocks and variably deformed granites in the Kathmandu Nappe. These ages range from 44 Ma to 14 Ma, and suggest a record of both Eo-Himalayan (Eocene) and Neo-Himalayan (Miocene) tectonothermal events in the Tertiary Himalayan orogeny. The Miocene event was associated with translation along the MCT zone. No tectonothermal event of the Late Miocene to Early Pliocene ages have been reported near the MCT zone in southern Lesser Himalayan crystalline nappe or klippe, although such events have been documented within and around the MCT zone in the northern root zone of the Higher Himalaya. This suggests that out-of-sequence thrusting may have occurred between 14 Ma and 5 Ma, probably during the period 10-7.5 Ma. Since then the frontal MCT zone below the Kathmandu Nappe has been inactive, but the MCT zone in the northern root zone has remained active. The rapid increase in denudation rates of the Higher Himalaya since the Late Miocene may have been caused by ramping along the out-of-sequence thrust at depth.  相似文献   
6.
This study is the first integrated geological and geophysical investigation of the Hidaka Collision Zone in southern Central Hokkaido, Japan, which shows complex collision tectonics with a westward vergence. The Hidaka Collision Zone consists of the Idon'nappu Belt (IB), the Poroshiri Ophiolite Belt (POB) and the Hidaka Metamorphic Belt (HMB) with the Hidaka Belt from west to east. The POB (metamorphosed ophiolites) is overthrust by the HMB (steeply eastward-dipping palaeo-arc crust) along the Hidaka Main Thrust (HMT), and in turn, thrusts over the Idon'nappu Belt (melanges) along the Hidaka Western Thrust (HWT). Seismic reflection and gravity surveys along a 20-km-long traverse across the southern Hidaka Mountains revealed hitherto unknown crustal structures of the collision zone such as listric thrusts, back thrusts, frontal thrust-and-fold structures, and duplex structures. The main findings are as follows. (1) The HMT, which dips steeply at the surface, is a listric fault dipping gently at a depth of 7 km beneath the eastern end of the HMB, and cutting across the lithological boundaries and schistosity of the Hidaka metamorphic rocks. (2) A second reflector is detected 1 km below the HMT reflector. The intervening part between these two reflectors is inferred to be the POB, which is only little exposed at the surface. This inference is supported by the high positive Bouguer anomalies along the Hidaka Mountains. (3) The shallow portion of the IB at the front of the collision zone has a number of NNE-dipping reflectors, indicative of imbricated fold-and-thrust structures. (4) Subhorizontal reflectors at a depth of 14 km are recognized intermittently at both sides of the seismic profile. These reflectors may correspond to the velocity boundary (5.9–6.6 km/s) previously obtained from seismic refraction profiling in the northern Hidaka Mountains. (5) These crustal structures as well as the back thrust found in the eastern end of the traverse represent characteristics of collisional tectonics resulting from the two collisional events since the Early Tertiary.  相似文献   
7.
The Main Central Thrust (MCT) is a tectono-metamorphic boundary between the Higher Himalayan crystallines (HHC) and Lesser Himalayan metasediments (LHS), reactivated in the Tertiary, but which had already formed as a collisional boundary in the Early Paleozoic. To investigate the nature of the MCT, we analyzed whole-rock Nd isotopic ratios of rocks from the MCT and surrounding zones in the Taplejung–Ilam area of far-eastern Nepal, Annapurna–Galyang area of central Nepal, and Maikot–Barekot area of western Nepal. We define the MCT zone as a ductile–brittle shear zone between the upper MCT (UMCT) and lower MCT (LMCT). The protoliths of the MCT zone may provide critical constraints on the tectonic evolution of the Himalaya. The LHS is lithostratigraphically divided into the upper and lower units. In the Taplejung–Ilam area, different lithologic units and their εNd (0) values are as follows; HHC (− 10.0 to − 18.1), MCT zone (− 18.5 to − 26.2), upper LHS unit (− 17.2), and lower LHS unit (− 22.0 to − 26.9). There is a distinct gap in the εNd (0) values across the UMCT except for the southern frontal edge of the Ilam nappe. In the Annapurna–Galyang and Maikot–Barekot areas, different lithologic units and their εNd (0) values are as follows; HHC (− 13.9 to − 17.7), MCT zone (− 23.8 to − 26.2 except for an outlier of − 12.4), upper LHS unit (− 15.6 to − 26.8), and lower LHS unit (− 24.9 to − 26.8). These isotopic data clearly distinguish the lower LHS unit from the HHC. Combining these data with the previously published data, the lowest εNd (0) value in the HHC is − 19.9. We regard rocks with εNd (0) values below − 20.0 as the LHS. In contrast, rocks with those above − 19.9 are not always the HHC, and some parts of them may belong to the LHS due to the overlapping Nd isotopic ratio between the HHC and LHS. Most rocks of the MCT zone have Nd isotopic ratios similar to those of the LHS, but very different from those of the HHC. The spatial patterns in the distribution of εNd (0) value around the UMCT suggest no substantial structural mixing of the HHC and LHS during the UMCT activities in the Tertiary. A discontinuity in the spatial distribution of εNd (0) values is laterally continuous along the UMCT throughout the Himalayas. These facts support the theory that the UMCT was originally a material boundary between the HHC and LHS, suggesting the MCT zone was mainly developed with undertaking a role of sliding planes during overthrusting of the HHC in the Tertiary.  相似文献   
8.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号