首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   4篇
地球物理   9篇
  2022年   1篇
  2020年   1篇
  2019年   2篇
  2018年   3篇
  2017年   2篇
排序方式: 共有9条查询结果,搜索用时 15 毫秒
1
1.
Bulletin of Earthquake Engineering - Automated Multi-Depth Shuttle Warehouses (AMSWs) are compact storage systems that provide a large surface occupation and therefore maximum storage density....  相似文献   
2.
Several proposals are explored for the hazard and intensity measure (IM) consistent selection of bidirectional ground motions to assess the performance of 3D structural models. Recent studies have shown the necessity of selecting records that thoroughly represent the seismicity at the site of interest, as well as the usefulness of efficient IMs capable of estimating the response of buildings with low scatter. However, the advances realized are mostly geared towards the structural analysis of 2D models. Few are the combined record, and IM selection approaches suggested expressly for nonlinear dynamic analysis of 3D structural models, especially when plan asymmetry and torsion sensitivity come into play. Conditional spectrum selection is leveraged and expanded here to offer a suite of approaches based on both scalar and vector IMs that convey information from two orthogonal horizontal components of the ground motion. Applications on multiple 3D building models highlight the importance of (a) employing the same IM for both record selection and response assessment and (b) maintaining hazard consistency in both horizontal components, when using either a scalar or a vector IM. All tested approaches that respect these conditions can be viable, yet the one based on the geometric mean of multiple spectral ordinates from both components over a period range seems to hold the most promise for general use.  相似文献   
3.
Average spectral acceleration, AvgSA, is defined as the geometric mean of spectral acceleration values over a range of periods and it is a ground motion intensity measure used for structural response prediction. One of its advantages stands on the assumption that its distribution is computable from the available GMPEs for spectral acceleration, GMPE-SA, (called here indirect method) without the need for deriving new specific GMPEs for AvgSA, GMPE-AvgSA, (called here direct method). To what extent this assumption is valid, however, has never been verified. As such, we derived an empirical GMPE-AvgSA based on RESORCE ground motion dataset and we compared its predicted values with those from a GMPE-SA via the indirect approach. As expected, the results show that the indirect approach yields median AvgSA estimates that are identical to those of the direct approach. However, the estimates of AvgSA variance of the two methods are identical only if both the GMPE-SA and their empirical correlation coefficients among different SA ordinates are derived from the same record dataset.  相似文献   
4.
5.
Pulse-like records are well recognized for their potential to impose higher demands on structures when compared with ordinary records. The increased severity of the structural response usually caused by pulse-like records is commonly attributed to the spectral increment around the pulse period. By comparing the building response to sets of spectrally equivalent pulse-like and ordinary records, we show that there are characteristics of pulse-like records beyond the shape of the acceleration response spectrum that affect the results of nonlinear dynamic analysis. Nevertheless, spectral shape together with the ratio of pulse period to the first-mode structural period, Tp/T1, are confirmed as “sufficient” predictors for deformation and acceleration response metrics in a building, conditioned on the seismic intensity. Furthermore, the average spectral acceleration over a period range, AvgSA, is shown to incorporate to a good proxy for spectral shape, and together with Tp/T1, form an efficient and sufficient intensity measure for response prediction to pulse-like ground motions. Following this latter route, we propose a record selection scheme that maintains the consistency of Tp with the hazard of the site but uses AvgSA to account for the response sensitivity to spectral shape.  相似文献   
6.
In recent years, the additional risk posed to the built environment due to aftershock sequences and triggered events has been brought to attention, and several efforts have been directed towards developing fragility functions for structures in damaged conditions. Despite this rise of interest, a rather fundamental component for such tasks, namely that of aftershock ground motion record selection, has remained under-scrutinized. Herein, we propose a pragmatic procedure that can be applied for the selection of mainshock-aftershock ground motion pairs using consistent causal parameters and accounting for the correlation between their spectral accelerations. In addition, a structural analysis strategy that can be employed for the analytical derivation of damage-dependent fragility functions is outlined and presented through a case study. A more conventional back-to-back IDA analysis is also carried out in order to compare the derived damage-dependent fragility functions with the ones obtained with the proposed procedure. The results indicate that record selection remains a crucial factor even when assessing the structural vulnerability of damaged buildings, and should thus be treated cautiously.  相似文献   
7.
A series of scalar and vector intensity measures is examined to determine their suitability within the seismic risk assessment of liquid storage tanks. Using a surrogate modelling approach on a squat tank that is examined under both anchored and unanchored support conditions, incremental dynamic analysis is adopted to generate the distributions of response parameters conditioned on each of the candidate intensity measures. Efficiency and sufficiency metrics are used in order to perform the intensity measure evaluation for individual failure modes, while a comparison in terms of mean annual frequency of exceedance is performed with respect to a damage state that is mutually governed by the impulsive and convective modes of the tank. The results reveal combinations of spectral acceleration ordinates as adequate predictors, among which the average spectral acceleration is singled out as the optimal solution. The sole exception is found for the sloshing‐controlled modes of failure, where mainly the convective period spectral acceleration is deemed adequate to represent the associated response due to their underlying linear relationship. A computationally efficient method in terms of site hazard analysis is finally proposed to serve in place of the vector‐valued intensity measures, providing a good match for the unanchored tank considered and a more conservative one for the corresponding anchored system.  相似文献   
8.
The use of a seismic intensity measure (IM) is paramount in decoupling seismic hazard and structural response estimation when assessing the performance of structures. For this to be valid, the IM needs to be sufficient;that is, the engineering demand parameter (EDP) response should be independent of other ground motion characteristics when conditioned on the IM. Whenever non‐trivial dependence is found, such as in the case of the IM being the first‐mode spectral acceleration, ground motion selection must be employed to generate sets of ground motion records that are consistent vis‐à‐vis the hazard conditioned on the IM. Conditional spectrum record selection is such a method for choosing records that are consistent with the site‐dependent spectral shape conditioned on the first‐mode spectral acceleration. Based on a single structural period, however the result may be suboptimal, or insufficient, for EDPs influenced by different period values, for example, peak interstory drifts or peak floor accelerations at different floors, potentially requiring different record suites for each. Recently, the log‐average spectral acceleration over a period range, AvgSA, has emerged as an improved scalar IM for building response estimation whose hazard can be evaluated using existing ground motion prediction equations. Herein, we present a recasting of conditional spectrum record selection that is based on AvgSA over a period range as the conditioning IM. This procedure ensures increased efficiency and sufficiency in simultaneously estimating multiple EDPs by means of a single IM. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
9.
When performing loss assessment of a geographically dispersed building portfolio, the response or loss (fragility or vulnerability) function of any given archetype building is typically considered to be a consistent property of the building itself. On the other hand, recent advances in record selection have shown that the seismic response of a structure is, in general, dependent on the nature of the hazard at the site of interest. This apparent contradiction begs the question: Are building fragility and vulnerability functions independent of site, and if not, what can be done to avoid having to reassess them for each site of interest? In the following, we show that there is a non‐negligible influence of the site, the degree of which depends on the intensity measure adopted for assessment. Employing a single‐period (e.g., first‐mode), spectral acceleration would require careful record selection at each site and result to significant site‐to‐site variability of the fragility or vulnerability function. On the other hand, an intensity measure comprising the geometric mean of multiple spectral accelerations considerably reduces such variability. In tandem with a conditional spectrum record selection that accounts for multiple sites, it can offer a viable approach for incorporating the effect of site dependence into fragility and vulnerability estimates. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号