首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   1篇
测绘学   2篇
综合类   2篇
  2024年   1篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
排序方式: 共有4条查询结果,搜索用时 10 毫秒
1
1.
利用中国西南地区19个探空站2011~2014年数据,通过积分法计算大气水汽转换系数K。采用2011~2013年的K值对Emardson模型进行精化,分别构建西南地区不顾及和顾及高程因子的K值模型Emardson-I和Emardson-H。利用2014年积分计算的K值检验这两种模型的预报精度,结果表明:1)相对于Emardson-I模型,Emardson-H模型表现出更高的K值预报精度和更好的适应性;2)在高海拔地区,Emardson-H模型预报精度明显优于Emardson-I模型,表明高程因子是影响高海拔地区K值计算的重要因素。将两种新模型用于拉萨站GPS大气水汽反演,Emardson-H模型表现出更优的反演精度,两种模型的反演精度均优于2 mm。  相似文献   
2.
利用IGS(International GNSS Service)中心提供的中、低纬度地区平静期、活跃期观测数据,通过Klobuchar模型与双频观测模型解算电离层总电子含量(total electron content,TEC)值。采用Holt指数平滑模型对每个历元前6 d两种模型差值进行1 d预测,利用预测所得差值对Klobuchar模型第7 d的TEC值进行改进。实验结果表明,无论在电离层活跃期还是平静期,改进模型改正效果比基本模型有显著提升,改进模型能更好地反映电离层变化特性,尤其是夜间电离层变化特性。  相似文献   
3.
电离层延迟可严重制约单频接收机的定位精度.基于此,本文介绍了四种单频接收机常用的电离层延迟改正方法,包括广播电离层改正模型(策略1),顾及太阳位置的变化全球电离层格网产品(Global Ionosphere Map, GIM)时间旋转内插(策略2), GIM投影函数改正(策略3)和半合改正模型(策略4).同时,选择不同太阳活动期,不同纬度的测站验证不同电离层改正方法的单频精密单点定位(single-frequency point positioning,SF-PPP)定位结果偏差.经过对比分析,得到如下结论:1)总体来说,半合改正模型得到的定位效果最佳,其次是使用GIM产品对电离层延迟进行改正,最后是广播电离层模型;2)在不同太阳活动跃期,不同策略在低纬度测站的定位偏差最大,其次是高纬度测站,中纬度测站的定位偏差最小;3)策略2和策略3在不同太阳活动期不同纬度测站的水平定位平差约0.150 m,三维定位偏差约0.700 m;策略4在不同太阳活动期不同纬度测站的水平定位偏差为0.100 m,三维定位偏差为0.500 m.  相似文献   
4.
利用IGS中心提供的不同经纬度平静期、活跃期14 d的电离层TEC格网点数据,以前8 d的TEC值作为样本序列,分别采用Holt-Winters加法模型和乘法模型建立TEC预报模型,并预报后6 d的TEC值。结果表明,无论在电离层平静期还是活跃期,2种模型所得预报结果大致相同,并与实际观测数据吻合较好,但加法模型的预测结果能更好地反映电离层TEC的变化特性。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号