首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   112篇
  免费   7篇
  国内免费   1篇
测绘学   3篇
大气科学   7篇
地球物理   20篇
地质学   61篇
海洋学   12篇
天文学   11篇
自然地理   6篇
  2022年   1篇
  2021年   1篇
  2020年   3篇
  2019年   3篇
  2018年   3篇
  2017年   5篇
  2016年   6篇
  2015年   3篇
  2014年   2篇
  2013年   6篇
  2012年   4篇
  2011年   9篇
  2010年   5篇
  2009年   10篇
  2008年   11篇
  2007年   7篇
  2006年   6篇
  2005年   2篇
  2004年   4篇
  2003年   4篇
  2002年   4篇
  2001年   6篇
  2000年   1篇
  1999年   2篇
  1998年   1篇
  1996年   1篇
  1993年   1篇
  1992年   1篇
  1991年   3篇
  1986年   1篇
  1984年   1篇
  1957年   1篇
  1912年   1篇
  1910年   1篇
排序方式: 共有120条查询结果,搜索用时 15 毫秒
21.
A new bird ichnotaxon found in Cenicero (La Rioja, Ebro Basin, Spain) is described here. The footprints are preserved in sandstone beds in a central-distal alluvial fringe with a mud-dominated floodplain, located in the transition unit between the Nájera and Haro formations. This level is positioned between the Y and Z local Agenian biozones (lower Miocene). The footprints were preliminarily studied in another work and considered as an indeterminate ichnotaxon. Uvaichnites riojana ichnogen. nov. and ichnosp. nov. is a tridactyl footprint characterized by a prominent central pad, very large to enormous sized, with unjointed toes at the proximal end. These features differ from Aquatilavipes, Aviadactyla, Avipeda, Ludicharadripodiscus, Fuscinapeda, and Ornithotarnocia of the Avipedidae morphofamily. U. riojana is considered to be similar to common crane (Grus grus) footprints in the Gruidae family. There are a few references about this family in the Iberian Peninsula and Balearic Islands and this find could confirm the presence of Gruidae since at least the lower Miocene.  相似文献   
22.
When linearity can be assumed (linear response of heads to stresses), stream–aquifer flow exchange can be simulated as the drainage of a number of independent linear reservoirs. This conceptual model, which can be mathematically deduced in a univocal way from an eigenvalue solution of the linear groundwater flow problem, facilitates the understanding of the physical phenomenon and the analysis of influencing factors. The number of reservoirs required to simulate stream depletion in some ideal homogeneous cases of stream–aquifer connection was analyzed in detail in a previous investigation using analytical eigenvalue solutions [16]. However, most aquifers are heterogeneous in nature and numerical solutions must be employed to analyze whether they could also be simulated using few reservoirs. This paper presents a stochastic analysis of the influence of heterogeneity on the simulation of natural groundwater discharges in aquifers connected to rivers, as a series of linear reservoirs. A Monte-Carlo approach was employed to perform this study. The results show that, on a monthly time scale, many cases (even heterogeneous aquifers) can be simulated using just a few reservoirs with sufficient accuracy and at minimum computational cost. Therefore, this modeling technique can be useful to efficiently simulate the integrated management of complex water resources systems at the basin scale (with many aquifers, reservoirs, demands, etc.) that need to simultaneously consider surface and groundwater flow and stream–aquifer interaction.  相似文献   
23.
Climate effects on soil erodibility   总被引:3,自引:0,他引:3  
  相似文献   
24.
Modelling increased soil cohesion due to roots with EUROSEM   总被引:3,自引:0,他引:3  
As organic root exudates cause soil particles to adhere firmly to root surfaces, roots significantly increase soil strength and therefore also increase the resistance of the topsoil to erosion by concentrated flow. This paper aims at contributing to a better prediction of the root effects on soil erosion rates in the EUROSEM model, as the input values accounting for roots, presented in the user manual, do not account for differences in root density or root architecture. Recent research indicates that small changes in root density or differences in root architecture considerably influence soil erosion rates during concentrated flow. The approach for incorporating the root effects into this model is based on a comparison of measured soil detachment rates for bare and for root‐permeated topsoil samples with predicted erosion rates under the same flow conditions using the erosion equation of EUROSEM. Through backwards calculation, transport capacity efficiencies and corresponding soil cohesion values can be assessed for bare and root‐permeated topsoils respectively. The results are promising and present soil cohesion values that are in accordance with reported values in the literature for the same soil type (silt loam). The results show that grass roots provide a larger increase in soil cohesion as compared with tap‐rooted species and that the increase in soil cohesion is not significantly different under wet and dry soil conditions, either for fibrous root systems or for tap root systems. Power and exponential relationships are established between measured root density values and the corresponding calculated soil cohesion values, reflecting the effects of roots on the resistance of the topsoil to concentrated flow incision. These relationships enable one to incorporate the root effect into the soil erosion model EUROSEM, through adapting the soil cohesion input value. A scenario analysis shows that the contribution of roots to soil cohesion is very important for preventing soil loss and reducing runoff volume. The increase in soil shear strength due to the binding effect of roots on soil particles is two orders of magnitude lower as compared with soil reinforcement achieved when roots mobilize their tensile strength during soil shearing and root breakage. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
25.
This paper presents a research methodology associated with approximately a decade old computa- tional geosciences. To demonstrate how it can be used to investigate the dynamic mechanisms of geological phenomenon, we use as an example the equal-distant distribution of gold deposits in a three-dimensional permeable fault within the Yilgarn Craton, Western Australia. The related numerical results demonstrate that: (1) convective pore-fluid flow in fluid-saturated porous media is the control- ling dynamic mechanism leading to the equal-distant distribution of gold deposits along the fault; (2) the main characteristic of the new methodology is to change the traditionally used empirical, descrip- tive and qualitative methodology into the fundamentally scientific principles based predictive and quantitative methodology. Thus, this new methodology provides a modern scientific research tool for investigating the dynamic mechanisms associated with observed geological phenomena in nature.  相似文献   
26.
This paper presents a semianalytical approach for solving first-order perturbation (FOP) equations, which are used to describe dissolution-timescale reactive infiltration instability (RII) problems in fluid-saturated rocks. The proposed approach contains two parts because the chemical dissolution reaction divides the whole problem domain into two subdomains. In the first part, the interface-condition substitution strategy is used to derive the analytical expressions of purely mathematical solutions for the FOP equations in the upstream subdomain, where the dissolution chemical reaction is ceased and the FOP equations are weakly coupled. In the second part, the finite element method (FEM) is used to derive the analytical expressions of numerical solutions for the FOP equations in the downstream subdomain, where the dissolution chemical reaction needs to be considered and the FOP equations are strongly coupled so that it is impossible to derive purely mathematical solutions for them. Particular attention is paid to the development of the element-by-element forward marching strategy, which is associated with the use of the FEM for solving this new kind of scientific problem. The related analytical results demonstrated that (1) both the dynamic characteristic of a reactive infiltration system and the dimensionless wavenumber can have pronounced influences on the distribution of the FOP dimensionless acid concentration within the entire domain of the dissolution-timescale RII problems in fluid-saturated rocks and (2) the FOP dimensionless acid concentration distribution exhibits two significantly different patterns in the upstream and downstream subdomains of the dissolution-timescale RII system.  相似文献   
27.
28.
We studied the seasonal change of the spatial distribution of nitrite (NO-2), nitrate (NO-3), reactive phosphate (PO3-4), and silicate (SiO2) in the Colorado River Delta. We also generated 24-h time series at one location to study their short-period variability. The delta is a negative estuary. During summer, salinity may be as high as 40. Amplitude of spring tides is as large as 9 m, and this causes great water turbidity by sediment resuspension. Nutrient concentrations were high throughout the whole year, with lower values towards the oceanic region. Maximum nutrient values in the river delta were 15, 53, 11·5 and 92 μM, for NO-2, NO-3, PO3-4, and SiO2, respectively. Most values were under 2, 40, 5, and 60 μM, for NO-2, NO-3, PO3-4, and SiO2, respectively. Our nutrient data show no clear seasonal pattern. Possibly, high NO-3 values in the delta are due to groundwater input, mostly at the internal extreme, and high NO-2, PO3-4, and SiO2 values are due to resuspension of sediments and mixing of porewaters with the water column, caused mainly during spring tides. In the case of NO-2, oxidation of NH+4 in the water column would be part of the mechanism. This would explain the high negative correlation between NO-3 and sea-level, and the relatively low correlation between the other nutrients and sea-level, for the time series generated at a single location.  相似文献   
29.
Understanding the chemical links between ozone (O3) and its two main precursors, nitrogen oxides (NOx) and volatile organic compounds (VOC), is important for designing effective photochemical smog reduction strategies. This chemical relationship will determine which precursor (NOx or VOC) emission reduction will be more effective for decreasing the ozone formation. Under certain conditions, ozone levels decrease as a result of a reduction in NOx emissions but do not respond significantly to changes in VOC emissions (NOx-sensitive condition), while under other conditions ozone concentrations decrease in response to reductions in VOCs and may even increase when NOx emissions are reduced (VOC-sensitive conditions). Indicator species can be used to assess the sensitivity of ozone to changes in the emissions of its precursors. These indicators are species or species ratios involved in ozone photochemistry which reflect the primary chemical process through which the ozone was formed. In this work we use the MM5-CAMx model system to explore the behaviour of various indicator species during two meteorological situations featuring different atmospheric conditions in a complex terrain area. The results show that indicators based on nitrogen compounds (i.e,. NOy and NOz) are suitable for defining the transition range from VOC- to NOx-sensitive chemistry, and that despite the uncertainties associated with the use of chemical indicators, the ratios O3/NOy and O3/NOz may provide a simple and useful way to summarize the response of ozone to changes in NOx and VOC emissions in Southwestern Spain.  相似文献   
30.
The Peruvian anchovy or anchoveta (Engraulis ringens) supports the highest worldwide fishery landings and varies in space and time over many scales. Here we present the first comprehensive sub-mesocale study of anchoveta distribution in relation to the environment. During November 2004, we conducted a behavioural ecology survey off central Peru and used a series of observational and sampling tools including SST and CO2 sensors, Niskin bottles, CTD probes, zooplankton sampling, stomach content analysis, echo-sounder, multibeam sonar, and bird observations. The sub-mesoscale survey areas were chosen from mesoscale acoustic surveys. A routine coast-wide (2000 km) acoustic survey performed just after the sub-mesoscale surveys, provided information at an even larger population scale. The availability of nearly concurrent sub-mesoscale, mesoscale and coast-wide information on anchoveta distribution allowed for a unique multi-scale synthesis. At the sub-mesoscale (100s m to km) physical processes (internal waves and frontogenesis) concentrated plankton into patches and determined anchoveta spatial distribution. At the mesoscale (10s km) location relative to the zone of active upwelling (and age of the upwelled water) and the depth of the oxycline had strong impacts on the anchoveta. Finally, over 100s km the size of the productive area, as defined by the upwelled cold coastal waters, was the determining factor. We propose a conceptual view of the relative importance of social behaviour and environmental (biotic and abiotic) processes on the spatial distribution of anchoveta. Our ecological space has two y-axis; one based on self-organization (social behaviour), and the other based on the environmental processes. At scales from the individual (10s cm), to the nucleus (m), social behaviour (e.g. the need to school) drives spatial organization. At scales larger than the school, environmental forces are the main driver of fish distribution. The conceptual ecosystem models presented in this paper may provide the final links needed to develop accurate forecasts of the spatial distribution of anchoveta over multiple scales.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号