首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 531 毫秒
1.
基于信息量模型和数据标准化的滑坡易发性评价   总被引:1,自引:0,他引:1  
本文以北川曲山-擂鼓片区为研究区,将坡度、坡向、高程、地层、距断层的距离、距水系的距离和距道路的距离作为该区域滑坡易发性评价因子。采用信息量模型计算了各项评价因子的信息量值,并运用4种标准化模型对信息量值进行标准化处理。各评价因子的权重由层次分析法(AHP)确定。在GIS中将权重值和各评价因子的标准化信息量值,进行叠加计算得到区域滑坡总信息量值,并基于自然断点法对其进行重分类,将研究区划分为极高易发区、高易发区、中易发区、低易发区和极低易发区5级易发区。将基于4种标准化模型和信息量模型得到的滑坡易发性评价结果进行了对比分析,结果表明:基于最值标准化信息量模型的滑坡易发性评价结果的ROC曲线下面积AUC值为0.807,高于其余模型的AUC值,说明最值标准化信息量模型的滑坡易发性评价效果最好。极高易发区面积占研究区面积的20.03%,离断层和水系较近,主要分布地层为寒武系、志留系和三迭系。研究结果可为区内滑坡风险评价和灾害防治提供参考。  相似文献   

2.
由于具有类似的工程地质和水文地质条件, 在高度相关的降雨作用下, 同一个区域中的降雨诱发浅层斜坡失稳灾害常成群出现。在区域尺度预测浅层斜坡失稳灾害对滑坡灾害的防灾减灾工作具有重要的意义。为此, 提出了一种基于力学原理的降雨诱发浅层斜坡失稳灾害预测新模型RARIL。该模型采用修正Green-Ampt模型进行降雨入渗分析, 采用无限体边坡模型进行安全系数计算, 利用可靠度原理考虑区域斜坡稳定性分析中的参数不确定性。该模型具有可考虑降雨诱发浅层斜坡的失稳力学机理、可考虑区域内斜坡土体参数不确定性, 以及计算效率高、易于在GIS平台上实现等优点。案例分析表明, RARIL模型较为准确地预测了2010年8月12日11∶00至2010年8月14日9∶00期间强降雨在四川省汶川县映秀镇附近的303省道K0-K20段沿线区域引发的滑坡灾害, 研究结果证明RARIL模型在预测降雨诱发区域斜坡失稳灾害方面有很好的应用前景。   相似文献   

3.
为了弥补滑坡灾害危险性区划研究中影响因子和等级划分的不确定性,结合前人研究成果,依据斜坡几何形态、岩性、地质构造、河流侵蚀、土地利用类型、人类工程活动、降水条件等影响因子与研究区实际已发生的滑坡灾害数之间的关系,编制重庆市万州区滑坡灾害危险性评价标准,并基于GIS技术和信息量模型法,计算滑坡评价因子的信息量,就万州区滑坡危险性进行区划,最后基于乡镇行政区对该区滑坡危险性区划进行细化。结果表明:建设用地、坡高为90~200 m的地形、1 024~1 060 mm的年降雨量以及侏罗系中统上沙溪庙组岩层等因素对万州区滑坡发生影响较大;根据滑坡灾害危险性评价标准,万州区滑坡灾害被划分为高、中、低、极低等4个危险区;应用信息量模型法得到的万州区滑坡危险性区划与实际情况比较吻合;高危险区和中危险区面积分别为564.4 km2和848.6 km2,分别占万州区总面积的16.3%和24.5%,主要分布于长江干流及支流两岸的居民相对集中区以及公路干线地段;高危险和中危险乡镇主要分布在万州区经济较为发达的长江干流两岸,尤其是左岸的黄柏乡、太龙镇、天城镇、李河镇等以及万州主城区。  相似文献   

4.
四川省滑坡灾害严重,特别是2008年之后,灾情显著加剧,如何预防滑坡灾害是保护人民生命财产安全的有效途径。滑坡灾害的预警模型研究是滑坡灾害预防领域的核心课题。本文对四川省滑坡灾害危险性进行了评价,并开展了滑坡灾害气象风险预警模型研究。①以确定性系数的方法量化坡度、地形起伏度、水文地质岩性、植被覆盖度、地震烈度和年均降雨量因子,建立逻辑回归模型,定量地进行四川省滑坡灾害危险性区划,并对结果进行验证。结果表明,四川省滑坡灾害高危险性区域成“Y”字型分布,此外川中、川东北地区滑坡灾害危险性也非常高,这与四川省滑坡灾害的空间分布情况相符。②在前期滑坡灾害与降雨量统计分析、滑坡灾害危险性评价的基础上,以滑坡灾害危险性评价为静态因子,日降雨量数据为动态因子,通过逻辑回归模型的结果,确定以当日降雨量概率化值、滑坡灾害危险性值、前一日降雨概率化值、前两日降雨概率化值、前三日降雨概率化值为临灾模型影响因子,各因子对预警结果影响程度按上述顺序递减,建立了地质-气象耦合的临灾气象预警模型。通过检验区数据对模型的检验表明,该预警模型能成功预警80%以上的滑坡灾害;通过滑坡灾害群发个例检验发现,该预警模型与四川省现用模型相比,预警区域明显减小,空报率和漏报率显著降低。  相似文献   

5.
随着我国城市化建设进程的加快,城市水系和绿地面积不断缩减,地表硬质化现象持续加重,城市扩张所带来的问题正日益凸显,尤其是汛期强降雨导致的内涝灾害日渐成为亟需解决的城市顽疾。城市内涝灾害模拟及风险评估是推进城市内涝灾害管理,减少内涝灾害损失的有效途径。本文在综合近年来国内外相关研究的基础上,从城市内涝产生机理、模型及风险评估的角度对城市内涝的研究进行了详细阐述。在模型方面重点介绍了两种应用广泛的雨洪模拟模型:SCS和SWMM模型,对两者的优缺点进行了分析,同时简单归纳了其他雨洪模型。在灾情风险评估方法方面,重点介绍了基于历史灾情数理统计、遥感图像和GIS技术耦合分析和基于指标体系评估等的风险评估方法,并对比分析了各自的优缺点及适用范围。最后对城市内涝模型及风险评估的未来发展方向进行了展望,提出集成多模型耦合的城市雨洪模拟模型以及多学科联合的灾害风险评估研究将成为今后的发展趋势。  相似文献   

6.
基于地球多传感器网络信息的潜在滑坡判识模型   总被引:1,自引:0,他引:1  
潜在滑坡的判识是滑坡预测预报中的关键问题,潜在滑坡早期判识能够有效减少灾害的发生。基于滑坡灾害诱发的各种影响因素,利用地球多源时空信息和多传感器网络,遥感监测潜在滑坡体,利用监测设备获取滑坡岩性、坡体结构、地貌形态、活动迹象等关键控制信息,从中选取滑坡灾害诱发的主要控制要素作为判识指标,建立基于多源信息的潜在滑坡多因素判识模型;特别是根据滑坡的成灾规律,分析潜在滑坡孕育过程中地貌形态改变、成灾条件变化与滑坡发生的临滑诱发条件,建立基于不同信息源的滑坡控制因素判识模型。最后,通过汶川地震灾区垮梁子滑坡体实例分析,验证潜在滑坡综合判识模型并进行优化,从而为滑坡灾害的早期判识预测提供依据。  相似文献   

7.
以三峡库区万州区为例,选择具有代表性的地质环境指标,分析各指标等级,利用逻辑回归、支持向量机和决策树3种数理统计模型,计算全区滑坡灾害易发性程度,分析3种日降雨工况下滑坡的发生概率,得到各日降雨工况下万州区滑坡灾害危险性分布图。确定了支持向量机模型为万州区滑坡灾害易发性分析的最优模型;万州区滑坡灾害高易发区和高危险区主要表现出沿河道水系呈带状分布、沿高程垂直分布、在城镇区集中分布的特点;特定工况下,万州区滑坡灾害危险性随着日降雨量增大而增大。   相似文献   

8.
滑坡灾害应急处置能力是地质灾害减灾防灾的重要方面。目前,基于滑坡灾害预测和预警分级成果,系统性的应急措施分类研究还鲜有展开,因此,以三峡库区白水河滑坡为例,运用时间序列加法模型将滑坡累计位移分解为趋势项位移与周期项位移,并分别应用多项式拟合及自回归(AR)模型对2个分量进行预测,在此结果上采用聚类分析方法将滑坡变形分为匀速变形与加速变形阶段,综合判断滑坡灾害预警等级,开展了针对滑坡预警分级的应急措施研究。结果表明:白水河滑坡预警等级主要为蓝色和黄色2种类型,对处于不同的预警等级下的滑坡,可根据滑坡变形特征快速决策,基于滑坡灾害预测和预警分级结果能更有效地指导滑坡应急处置。   相似文献   

9.
基于有限元数值模拟技术,利用GPS数据获取喜马拉雅东构造结区域的断裂运动状态和构造应力场,并结合区域滑坡隐患探讨构造活动对滑坡灾害发育的影响。结果显示,差异化的断裂运动会造成显著相异的构造应力分布,而区域滑坡灾害更集中分布在断层锁固引起的构造应力异常区域;对应力异常区的斜坡进行稳定性研究发现,受应力长期累积影响,斜坡表层应力场持续扰动,造成潜在危险滑移面安全系数降低,促进滑坡失稳。研究表明,断裂构造运动模式可对区域滑坡灾害的发育和分布造成不可忽视的影响,且长期持续的构造应力荷载将促进滑坡灾害的发育。  相似文献   

10.
本研究以地质灾害频发的神农架林区为研究区域,以崩塌、滑坡、泥石流3种相关性较高的灾害为研究对象,基于GIS技术进行区域崩滑流灾害的综合风险评价,以辅助城乡规划及相关工作。评价基于研究区地形、地质、灾害点等基础数据,选取崩滑流灾害影响因子,利用Arc GIS空间分析功能,结合SPSS软件进行Binary Logistic回归分析,构建灾害风险评价模型,编制基于模型的研究区崩滑流风险评价图,得到相应评价结果,获知灾害孕育发生的主要影响因素及区域内崩滑流灾害高风险区分布情况。并探讨评价结果在辅助防灾减灾专项规划编制、城乡发展方向确定、重大基础设施选址等规划重点工作方面的应用,以期通过规划,防治和规避崩滑流地质灾害,保障山区人民群众的生命财产安全。  相似文献   

11.
By using the landslide risk evaluating model and the advantages of GIS technology in image processing and space analysis, the relative landslide hazard and risk evaluating system of the new county site of Badong is built up. The system is mainly consisted of four subsystems: Information management subsystem, hazard assessment subsystem, vulnerability evaluation subsystem and risk prediction subsystem. In the system, landslide hazard assessment, vulnerability evaluation, risk predictions are carried out automatically based on irregular units. At last the landslide hazard and risk map of the study area is compiled. During the whole procedure, Matter-Element Model, Artificial Neural Network, and Information Model are used as assessment models. This system provides an effective way for the landslide hazard information management and risk prediction of each district in the Reservoir of Three Gorge Project. The result of the assessment can be a gist and ensure for the land planning and the emigration project in Badong.  相似文献   

12.
By using the landslide risk evaluating model and the advantages of GIS technology in image processing and space analysis, the relative landslide hazard and risk evaluating system of the new county site of Badong is built up. The system is mainly consisted of four subsystems: Information management subsystem, hazard as- sessment subsystem, vulnerability evaluation subsystem and risk prediction subsystem. In the system, landslide hazard assessment, vulnerability evaluation, risk predictions are carried out automatically based on irregular units. At last the landslide hazard and risk map of the study area is compiled. During the whole procedure, Matter-Element Model, Artificial Neural Network, ancl Information Model are used as assessment models. This system provides an effective way for the landslide hazard information management and risk prediction of each district in the Reservoir of Three Gorge Project. The result of the assessment can be a gist and ensure for the land planning and the emigration project in Badong.  相似文献   

13.
A detailed landslide susceptibility map was produced in the Youfang catchment using logistic regression method with datasets developed for a geographic information system(GIS).Known as one of the most landslide-prone areas in China, the Youfang catchment of Longnan mountain region,which lies in the transitional area among QinghaiTibet Plateau, loess Plateau and Sichuan Basin, was selected as a representative case to evaluate the frequency and distribution of landslides.Statistical relationships for landslide susceptibility assessment were developed using landslide and landslide causative factor databases.Logistic regression(LR)was used to create the landslide susceptibility maps based on a series of available data sources: landslide inventory; distance to drainage systems, faults and roads; slope angle and aspect; topographic elevation and topographical wetness index, and land use.The quality of the landslide susceptibility map produced in this paper was validated and the result can be used fordesigning protective and mitigation measures against landslide hazards.The landslide susceptibility map is expected to provide a fundamental tool for landslide hazards assessment and risk management in the Youfang catchment.  相似文献   

14.
Landslides are increasing since the 1980s in Xi’an, Shaanxi Province, China. This is due to the increase of the frequency and intensity of precipitation caused by complex geological structures, the presence of steep landforms, seasonal heavy rainfall, and the intensifcation of human activities. In this study, we propose a landslide prediction model based on the analysis of intraday rainfall (IR) and antecedent effective rainfall (AER). Primarily, the number of days and degressive index of the antecedent effective rainfall which affected landslide occurrences in the areas around Qin Mountains, Li Mountains and Loess Tableland was established. Secondly, the antecedent effective rainfall and intraday rainfall were calculated from weather data which were used to construct critical thresholds for the 10%, 50% and 90% probabilities for future landslide occurrences in Qin Mountain, Li Mountain and Loess Tableland. Finally, the regions corresponding to different warning levels were identified based on the relationship between precipitation and the threshold, that is; “A” region is safe, “B” region is on watch alert, “C” region is on warning alert and “D” region is on severe warning alert. Using this model, a warning program is proposed which can predict rainfall-induced landslides by means of real-time rain gauge data and real-time geo-hazard alert and disaster response programs. Sixteen rain gauges were installed in the Xi’an region by keeping in accordance with the regional geology and landslide risks. Based on the data from gauges, this model accurately achieves the objectives of conducting real-time monitoring as well as providing early warnings of landslides in the Xi’an region.  相似文献   

15.
Reservoir-landslide is mainly caused by changes in hydrodynamic conditions of slope interior at the time of water storage or discharge. The current study mainly focuses on the typical reservoir landslide, but the sudden occurrence of some unknown landslides brought a lot of difficulties for hazards prevention. Therefore, we proposed a method to evaluate the regional scale reservoir-landslide hazard. We took Wanzhou section of Three Gorges Reservoir (China) as the study area and systemically and synthetically carried out the reservoir-landslide hazard evaluation under the condition of water level regulation. Firstly, we made reservoir-landslide susceptibility assessment by using the methods of spatial analysis and statistics based on geological and geomorphological materials and field survey data, and then, analyzed the regional-scale slope stability based on the infinite slope model used to analyze the bank slope stability change under the condition of water fluctuation, finally, developed a reservoir-landslide hazard evaluation model based on the results of susceptibility and stability. The hazard evaluation model was used to predict and evaluate the hazard change under the role of water level regulation. The results showed that the landslide hazard of the whole region decreased during water storage, landslide hazards increased during water discharge. The faster the regulation speed, the greater the slope hazard. The results can provide the basis for hazard management and regional land-use planning.  相似文献   

16.
Earthquake induced landslides are one of the most severe geo-environmental hazards that cause enormous damage to infrastructure, property, and loss of life in Nuweiba area. This study developed a model for mapping the earthquake-induced landslide susceptibility in Nuweiba area in Egypt with considerations of geological, geomorphological, topographical, and seismological factors. An integrated approach of remote sensing and GIS technologies were applied for that target. Several data sources including Terra SAR-X and SPOT 5 satellite imagery, topographic maps, field data, and other geospatial resources were used to model landslide susceptibility. These data were used specifically to produce important thematic layers contributing to landslide occurrences in the region. A rating scheme was developed to assign ranks for the thematic layers and weights for their classes based on their contribution in landslide susceptibility. The ranks and weights were defined based on the knowledge from field survey and authors experiences related to the study area. The landslide susceptibility map delineates the hazard zones to three relative classes of susceptibility: high, moderate, and low. Therefore, the current approach provides a way to assess landslide hazards and serves for geo-hazard planning and prediction in Nuweiba area.  相似文献   

17.
Dynamic assessment of rainfall-induced shallow landslide hazard   总被引:1,自引:1,他引:0  
The assessment of rainfall-induced shallow landslide hazards is a significant issue in the Three Gorges Reservoir area in China due to the rapid development of land in the past two decades. In this study, a probabilistic analysis method that combines TRIGRS and the point-estimate method for evaluating the hazards of shallow landslides have been proposed under the condition of rainfall over a large area. TRIGRS provides the transient infiltration model to analyze the pore water pressure during a rainfall. The point-estimate method is used to analyze the uncertainty of the soil parameters, which is performed in the geographic information system (GIS). In this paper, we use this method to evaluate the hazards of shallow landslides in Badong County, Three Gorges Reservoir, under two different types of rainfall intensity, and the results are compared with the field investigation. The results showed that the distribution of the hazard map is consistent with the observed landslides. To some extent, the distribution of the hazard map reflects the spatial and temporal distribution of the shallow landslide caused by rainfall.  相似文献   

18.
Building vulnerability evaluation in landslide deformation phase   总被引:1,自引:0,他引:1  
Building vulnerability evaluation is important in the risk assessment on earthquake and flood hazards. But for landslide hazard, it is also a very important part for the people in buildings. Most discussions or researches about building vulnerability are for landslide failure, few for landslide in deformation phase. For this objective, this paper discussed about building vulnerability evaluation using Zhaoshuling landslide as an example Zhaoshuling landslide named located in the Three Gorges Reservoir Area, China. After a field survey on the geological condition of landslide, detailed field investigation on the buildings’ location and structure is carried out. To get landslide surface deformation, numerical simulation method is used under the combining condition of water fluctuation and rainfall. Then building deformation and probable damage degree is analyzed according to landslide surface deformation and the relative theory in mining. Based on the national standard building damage classification system, the vulnerability of all the buildings on the landslide is semi-quantitatively evaluated.  相似文献   

19.
This paper deals with the formative process of the Wenchuan earthquake disaster chain risk. Selected earthquake-landslides chain risk is critically evaluated by the probability of landslide displacement failure based on the Newmark's permanent-deformation model. In this context, a conceptual model of regional disaster chain risk assessment was proposed, in which the hazardformative environments sensitivity was the core factor as well as the main difference compared with single disaster risk assessment. The disaster chain risk is accumulation of primary disaster risk and the secondary disasters risks. Results derived from the Wenchuan case proved that the conceptual model was suitable for the disaster chain risk assessment, especially the sudden disaster chain. This experience would offer greater potential in application of conceptual model of disaster chain risk assessment, in the process of large-scale disaster risk governance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号