首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
地质灾害威胁着山区人民生命财产安全, 进行地质灾害易发性评价有助于山区城镇进行规划与建设时规避灾害风险。以川东南古蔺县为例, 基于ArcGIS空间分析获取了研究区高程、坡度、岩性、斜坡结构、植被指数、距断层距离和距道路距离7个评价因子, 采用信息量模型分别对滑坡和崩塌灾害进行易发性评价后, 进一步利用ArcGIS单元统计功能对比了滑坡和崩塌易发性的信息量值, 选取相对更大的信息量值作为该栅格的最终信息量值, 绘制了研究区综合地质灾害易发性图, 利用自然断点法将古蔺县按信息量值的大小划分为极低、低、中、高和极高易发区。结果表明: 地质灾害主要分布在断层和道路附近, 断层和人类工程活动是造成研究区地质灾害频发的主要原因; 高易发区与极高易发区面积之和为1 315.62 km2, 占全区总面积的41.32%;预测模型性能经ROC曲线检验, AUC值为0.812 5, 说明栅格最大值法预测的古蔺县综合地灾易发性效果良好。   相似文献   

2.
巴东县城由于其特殊的地理位置和特有的地质条件,使之成为滑坡灾害多发地带,严重威胁着巴东县城的发展,因此,有必要对巴东县城进行滑坡易发性评价研究。首先,基于GIS平台分别提取影响滑坡发生发育的各指标因子(地层岩性、地形地貌、地质构造、水文地质条件等),并划分证据层;其次,采用证据权法分别计算各证据层的权重及后验概率;然后将单元各证据层后验概率进行叠加,生成滑坡易发性分区图;最后,使用自然断点法将研究区按滑坡易发程度分为极高易发区、高易发区、中易发区、低易发区与极低易发区5类,极高易发区与高易发区面积之和约占研究区总面积的33%,其中86%的已有滑坡发生在极高易发区和高易发区,利用成功率曲线检验表明区划效果较好。   相似文献   

3.
为针对性地采取预防、避让、治理等地质灾害防治与管控提供依据,完善在地质灾害危险性评价中将降雨作为单一诱发因子参与评价体系的弊端,在大雨、暴雨、大暴雨和特大暴雨4种不同降雨工况条件下进行了研究区崩滑地质灾害危险性评价。以云南省元阳县作为研究区域,以栅格单元作为评价单元,选取地貌类型、高程、坡度、坡向、曲率、工程地质岩组、土地利用类型、断层距离和河流距离9个评价因子,采用主观的层次分析法与客观的信息量模型相结合的加权信息量模型对元阳县崩塌、滑坡进行了地质灾害易发性评价。研究结果表明:基于自然间断点法元阳县域可分为低、中、高、极高4类易发区,4类易发区面积分别占元阳县面积的21.55%,35.46%,25.53%和17.16%。利用ROC曲线得出区划结果精度AUC值为0.812,表明区划结果很好。在易发性评价基础上,以年平均最大日降雨量为诱发因素,分别对大雨、暴雨、大暴雨和特大暴雨4种工况条件下的研究区进行了崩塌、滑坡地质灾害危险性评价,得到了大雨([25,50) mm)工况、暴雨([50,100) mm)工况、大暴雨([100, 250]mm)工况和特大暴雨(>250 mm)工况4种...  相似文献   

4.
区域滑坡易发性评价对滑坡灾害防治具有重要意义,贵州省思南县由于其特殊的自然地理和地质条件,受滑坡地质灾害的影响非常严重,因此,非常有必要对思南县的滑坡易发性进行评价。在滑坡编录的基础上,采用由RS、GIS和GPS组成的3S技术,获取了思南县的数字高程模型、坡度、坡向、剖面曲率、坡长、岩土类型、地表湿度指数、距离水系的距离、植被覆盖度和地表建筑物指数10个滑坡影响因子;再在频率比和相关性分析的基础上,利用逻辑回归模型对思南县的滑坡易发性进行了评价并绘制了易发性分布图。结果表明:利用逻辑回归模型预测思南县滑坡易发性的准确率(AUC值)达到0.797,较为准确地预测出了思南县滑坡分布规律;极高和高滑坡易发区主要分布在高程低于600 m、地表坡度较大且以软质岩类为主的区域;而极低和低滑坡易发区主要分布在高程较高、地表坡度较小且以硬质岩类为主的区域。   相似文献   

5.
蒙阴县位于山东省东南部,岱崮地貌分布范围较广。近年来,随着人类工程活动的增强,崩塌滑坡泥石流灾害进一步加剧。本文在山东省蒙阴县1∶5万地质灾害风险普查的基础上,结合最新的遥感信息,选取坡度、起伏度、工程地质岩组、地质构造、地貌类型5个影响因子作为研究区地质灾害易发性的评价指标,采用信息量模型法对各评价因子进行信息量计算,通过GIS空间分析平台,建立了蒙阴县地质灾害易发性评价体系,为蒙阴县有效开展防灾减灾救灾工作,切实保障经济社会可持续发展提供有效的科学决策依据。研究区划分为地质灾害高易发区、中易发区、低易发区、非易发区4个等级,特征曲线(ROC)的线下面积(AUC)精度检验值为0.833,表明评价精度较高。  相似文献   

6.
输电线路的安全运行对国家经济建设与发展具有重要意义,而针对输电线路进行地质灾害易发性评价的研究较少。以京津冀地区的输电线路为例,选取高程、坡度、坡向、地形起伏度、地层岩性、距断层距离、距水系距离、土地利用类型8个指标因子,采用频率比法对各指标因子进行分级,构建易发性评价体系。再利用不同的机器学习模型,使用不同尺寸的栅格单元作为评价单元对研究区进行易发性评价。最后,选取精度最高的机器学习模型与传统的层次分析法完成研究区易发性区划图。研究结果表明:贝叶斯网络模型在区域输电线路易发性评价中的应用效果最好,模型性能最强,最高AUC值为0.876。与传统的层次分析法相比,BN模型在研究区易发性制图中的效果更好,精度更高。此外,采用50 m的栅格作为评价单元在研究区易发性评价中取得了最好的应用效果,研究成果为输电线路地质灾害易发性评价以及栅格尺寸的选用提供了思路以及参考。  相似文献   

7.
为对比信息量模型中灾害数量和灾害面积2种样本的适用性,以黄冈南部地区作为研究对象,探讨了评价因子的优化组合形式,采用信息量模型,根据研究区工程地质条件和地质灾害的特征初选评价因子,结合成功率曲线确定2种样本的因子优化组合,进而通过灾害比率及典型地质灾害点验证易发性评价结果。结果表明:①在单因子评价结果中,2种样本的单因子评价结果的AUC值排列顺序不尽相同,但呈现出一定规律性;②各叠加因子评价结果的准确度均达到因子优化组合的94.9%以上,变化幅度相对较小,且呈现出随因子数量增加而增大的趋势,但并不是越多越好;③2种样本的易发性评价结果都显示出高、较高易发区主要集中于研究区中部及北部地区,低易发区和较低易发区多集中于长江沿岸以及研究区南部,与灾害分布位置相符;④2种样本均为地质灾害易发性评价中信息量模型的有效计算样本,且面积样本的准确度明显优于数量样本。   相似文献   

8.
对于滑坡易发性预测中的水系、公路和断层等线状环境因子, 现有研究大多采用缓冲分析提取距离线状因子的距离。但缓冲分析得到的线距离属于离散型变量, 带有大小不等的随机波动性且对点或线要素的误差较为敏感, 导致滑坡易发性建模精度下降。提出了使用水系和公路的空间密度等连续型变量改进线状环境因子的适宜性。以江西省安远县为例, 选取高程、地形起伏度、距水系和公路距离等14个环境因子(原始因子), 再将距水系和公路距离2个线状因子改进为水系密度和公路密度(改进因子); 之后采用逻辑回归、多层感知器、支持向量机和C5.0决策树等机器学习模型, 分别构建了基于原始因子和改进因子的机器学习模型以预测滑坡易发性; 最后利用ROC曲线和易发性指数分布特征等来研究建模规律。结果表明: ①改进因子机器学习预测精度均高于原始因子机器学习模型, 表明空间密度对于易发性预测的适宜性更好; ②在4类机器学习模型中C5.0模型对于滑坡易发性预测性能最好, 其次是SVM、MLP和LR; ③水系和公路两类环境因子的重要性较高且使用改进因子机器学习后这两类环境因子重要性排名依然非常靠前。   相似文献   

9.
基于信息量模型的涪陵区地质灾害易发性评价   总被引:2,自引:0,他引:2  
本文以重庆涪陵区为研究区域,选取坡度、坡向、累计汇水面积、地层岩性、水域、降雨量、植被和土地利用分类8个影响因子,提取高分一号遥感数据(2013.12.24)动态影响因子,引入信息量模型,分别计算上述影响因子对应的信息量,对该时期示范区的地质灾害危险性进行评价,并引入ROC曲线和AUC评价指标,对得到的区域地质灾害易发性评价结果进行精度评估。结果显示,2013年12月研究区内高易发区面积占总面积的9.73%,该易发区内含有104个地质灾害点,占所有灾害点的52.7%,灾积比为5.42,明显大于其他易发等级类别。利用ROC评价方法,计算成功率曲线AUC为0.796,预测率曲线AUC为0.748(74.8%),具有较高的可靠性,证明本文方法在该区域地质灾害易发性评价的适应性良好。  相似文献   

10.
四川省地形高低悬殊, 岩性构造发育, 各类地质灾害频发, 开展地质灾害易发性评价具有重要意义。崩塌、泥石流属于广义上的滑坡, 以四川省丹巴县为例, 从考虑不同滑坡类别的区域性地质灾害易发性出发综合考虑崩塌、滑坡、泥石流的空间概率分布。基于ArcGIS通过高精度数字高程模型共选取高程、坡度等10个地质灾害关键控制因素, 采用信息量模型对综合地质灾害进行了易发性评价。最终通过ArcGIS的单元统计(Cell Statistics)功能实现多个栅格图层最大值法合成综合易发性, 进一步利用受试者工作特征曲线(ROC)验证单种滑坡类别易发性模型的精度。按照自然断点法将研究区划分为极低、低、中、高、极高易发区, 高易发区和极高易发区主要集中分布在章谷镇、太平桥乡以及甲居镇等地。研究结果证明信息量模型能对单类地质灾害进行评价, 栅格最大值法是获取综合易发性的一种有效评价方法。   相似文献   

11.
The loess area in the northern part of Baoji City, Shaanxi Province, China is a region with frequently landslide occurrences. The main aim of this study is to quantitatively predict the extent of landslides using the index of entropy model(IOE), the support vector machine model(SVM) and two hybrid models namely the F-IOE model and the F-SVM model constructed by fractal dimension. First, a total of 179 landslides were identified and landslide inventory map was produced, with 70%(125) of the landslides which was optimized by 10-fold crossvalidation being used for training purpose and the remaining 30%(54) of landslides being used for validation purpose. Subsequently, slope angle, slope aspect, altitude, rainfall, plan curvature, distance to rivers, land use, distance to roads, distance to faults, normalized difference vegetation index(NDVI), lithology, and profile curvature were considered as landslide conditioning factors and all factor layers were resampled to a uniform resolution. Then the information gain ratio of each conditioning factors was evaluated. Next, the fractal dimension for each conditioning factors was calculated and the training dataset was used to build four landslide susceptibility models. In the end, the receiver operating characteristic(ROC) curves and three statistical indexes involving positive predictive rate(PPR), negative predictive rate(NPR) and accuracy(ACC) were applied to validate and compare the performance of these four models. The results showed that the F-SVM model had the highest PPR, NPR, ACC and AUC values for training and validation datasets, respectively, followed by the F-IOE model.Finally, it is concluded that the F-SVM model performed best in all models, the hybrid model built by fractal dimension has advantages than original model, and can provide reference for local landslide prevention and decision making.  相似文献   

12.
Bailongjiang watershed in southern Gansu province, China, is one of the most landslide-prone regions in China, characterized by very high frequency of landslide occurrence. In order to predict the landslide occurrence, a comprehensive map of landslide susceptibility is required which may be significantly helpful in reducing loss of property and human life. In this study, an integrated model of information value method and logistic regression is proposed by using their merits at maximum and overcoming their weaknesses, which may enhance precision and accuracy of landslide susceptibility assessment. A detailed and reliable landslide inventory with 1587 landslides was prepared and randomly divided into two groups, (i) training dataset and (ii) testing dataset. Eight distinct landslide conditioning factors including lithology, slope gradient, aspect, elevation, distance to drainages, distance to faults, distance to roads and vegetation coverage were selected for landslide susceptibility mapping. The produced landslide susceptibility maps were validated by the success rate and prediction rate curves. The validation results show that the success rate and the prediction rate of the integrated model are 81.7 % and 84.6 %, respectively, which indicate that the proposed integrated method is reliable to produce an accurate landslide susceptibility map and the results may be used for landslides management and mitigation.  相似文献   

13.
Rudraprayag in Garhwal Himalayan division is one of the most vulnerable districts to landslides in India. Heavy rainfall, steep slope and developmental activities are important factors for the occurrence of landslides in the district. Therefore, specific assessment of landslide susceptibility and its accuracy at regional level is essential for disaster management and proper land use planning. The article evaluates effectiveness of frequency ratio, fuzzy logic and logistic regression models for assessing landslide susceptibility in Rudraprayag district of Uttarakhand state, India. A landslide inventory map was prepared and verified by field data. Fourteen landslide parameters and generated inventory map were utilized to prepare landslide susceptibility maps through frequency ratio, fuzzy logic and logistic regression models. Landslide susceptibility maps generated through these models were classified into very high, high, medium, low and very low categories using natural breaks classification. Receiver operating characteristics (ROC) curve, spatially agreed area approach and seed cell area index (SCAI) method were used to validate the landslide models. Validation results revealed that fuzzy logic model was found to be more effective in assessing landslide susceptibility in the study area. The landslide susceptibility map generated through fuzzy logic model can be best utilized for landslide disaster management and effective land use planning.  相似文献   

14.
In this study, a novel approach of the landslide numerical risk factor(LNRF) bivariate model was used in ensemble with linear multivariate regression(LMR) and boosted regression tree(BRT) models, coupled with radar remote sensing data and geographic information system(GIS), for landslide susceptibility mapping(LSM) in the Gorganroud watershed, Iran. Fifteen topographic, hydrological, geological and environmental conditioning factors and a landslide inventory(70%, or 298 landslides) were used in mapping. Phased array-type L-band synthetic aperture radar data were used to extract topographic parameters. Coefficients of tolerance and variance inflation factor were used to determine the coherence among conditioning factors. Data for the landslide inventory map were obtained from various resources, such as Iranian Landslide Working Party(ILWP), Forestry, Rangeland and Watershed Organisation(FRWO), extensive field surveys, interpretation of aerial photos and satellite images, and radar data. Of the total data, 30% were used to validate LSMs, using area under the curve(AUC), frequency ratio(FR) and seed cell area index(SCAI).Normalised difference vegetation index, land use/land cover and slope degree in BRT model elevation, rainfall and distance from stream were found to be important factors and were given the highest weightage in modelling. Validation results using AUC showed that the ensemble LNRF-BRT and LNRFLMR models(AUC = 0.912(91.2%) and 0.907(90.7%), respectively) had high predictive accuracy than the LNRF model alone(AUC = 0.855(85.5%)). The FR and SCAI analyses showed that all models divided the parameter classes with high precision. Overall, our novel approach of combining multivariate and machine learning methods with bivariate models, radar remote sensing data and GIS proved to be a powerful tool for landslide susceptibility mapping.  相似文献   

15.
A detailed landslide susceptibility map was produced in the Youfang catchment using logistic regression method with datasets developed for a geographic information system(GIS).Known as one of the most landslide-prone areas in China, the Youfang catchment of Longnan mountain region,which lies in the transitional area among QinghaiTibet Plateau, loess Plateau and Sichuan Basin, was selected as a representative case to evaluate the frequency and distribution of landslides.Statistical relationships for landslide susceptibility assessment were developed using landslide and landslide causative factor databases.Logistic regression(LR)was used to create the landslide susceptibility maps based on a series of available data sources: landslide inventory; distance to drainage systems, faults and roads; slope angle and aspect; topographic elevation and topographical wetness index, and land use.The quality of the landslide susceptibility map produced in this paper was validated and the result can be used fordesigning protective and mitigation measures against landslide hazards.The landslide susceptibility map is expected to provide a fundamental tool for landslide hazards assessment and risk management in the Youfang catchment.  相似文献   

16.
Ethiopia has a mountainous landscape which can be divided into the Northwestern and Southeastern plateaus by the Main Ethiopian Rift and Afar Depression. Debre Sina area is located in Central Ethiopia along the escarpment where landslide problem is frequent due to steep slope, complex geology, rift tectonics, heavy rainfall and seismicity. In order to tackle this problem, preparing a landslide susceptibility map is very important. For this, GISbased frequency ratio(FR) and logistic regression(LR) models have been applied using landslide inventory and the nine landslide factors(i.e. lithology, land use, distance from river fault, slope, aspect, elevation, curvature and annual rainfall). Database construction, weighting each factor classes or factors, preparing susceptibility map and validation were the major steps to be undertaken. Both models require a rasterized landslide inventory and landslide factor maps. The former was classified into training and validation landslides. Using FR model, weights for each factor classes were calculated and assigned so that all the weighted factor maps can be added to produce a landslide susceptibility map. In the case of LR model, the entire study area is firstly divided into landslide and non-landslide areas using the training landslides. Then, these areas are changed into landslide and non-landslide points so as to extract the FR maps of the nine landslide factors. Then a linear relationship is established between training landslides and landslide factors in SPSS. Based on this relationship, the final landslide susceptibility map is prepared using LR equation. The success-rate and prediction-rate of FR model were 74.8% and 73.5%, while in case of LR model these were 75.7% and 74.5% respectively. A close similarity in the prediction and validation rates showed that the model is acceptable. Accuracy of LR model is slightly better in predicting the landslide susceptibility of the area compared to FR model.  相似文献   

17.
A comprehensive landslide inventory and susceptibility maps are prerequisite for developing and implementing landslide mitigation strategies. Landslide susceptibility maps for the landslides prone regions in northern Pakistan are rarely available. The Hunza-Nagar valley in northern Pakistan is known for its frequent and devastating landslides. In this paper, we have developed a landslide inventory map for Hunza-Nagar valley by using the visual interpretation of the SPOT-5 satellite imagery and mapped a total of 172 landslides. The landslide inventory was subsequently divided into modelling and validation data sets. For the development of landslide susceptibility map seven discrete landslide causative factors were correlated with the landslide inventory map using weight of evidence and frequency ratio statistical models. Four different models of conditional independence were used for the selection of landslide causative factors. The produced landslides susceptibility maps were validated by the success rate and area under curves criteria. The prediction power of the models was also validated with the prediction rate curve. The validation results shows that the success rate curves of the weight of evidence and the frequency models are 82% and 79%, respectively. The prediction accuracy results obtained from this study are 84% for weight of evidence model and 80% for the frequency ratio model. Finally, the landslide susceptibility index maps were classified into five different varying susceptibility zones. The validation and prediction result indicates that the weight of evidence and frequency ratio model are reliable to produce an accurate landslide susceptibility map, which may be helpful for landslides management strategies.  相似文献   

18.
已有滑坡敏感性研究中对评价指标的选取可以归结为气象、水文、地形、地质、植被、人类活动等方面,这些因子指标来源不一,在缺少数据资料地区难以完整收集。针对这个问题,考虑到目前DEM数据的广泛可获得性及其对滑坡评价的重要性,本文仅利用DEM数据及其派生因子,研究土质滑坡敏感性评价的可行性。研究中把评价因子分为2组:第1组数据仅由DEM派生,包括高程、坡度、坡向、地形起伏度、曲率、水流强度指数(Stream Power Index, SPI)、沉积运输指数(Sediment Transport Index, STI)、地形湿度指数(Topographic Wetness Index, TWI);第2组数据作为对照组,除了包括上述DEM派生的8个因子外,同时加入植被覆盖度、土地利用、土壤类型、年均降雨量因子。本文分别选取逻辑回归模型和证据权法,基于上述2组评价因子,以德化县为例对比2组因子评价结果,利用第1组和第2组数据进行滑坡敏感性评价,结果精度分别为73%和83%。结果表明,仅利用DEM数据进行土质滑坡敏感性评价方法可行,可以为缺乏资料区滑坡敏感性评价提供借鉴。  相似文献   

19.
Investigation on landslide phenomenon is necessary for understanding and delineating the landslide prone and safer places for different land use practices. On this basis, a new model known as genetic algorithm for the rule set production was applied in order to assess its efficacy to obtain a better result and a more precise landslide susceptibility map in Klijanerestagh area of Iran. This study considered twelve landslide conditioning factors (LCF) like altitude, slope, aspect, plan curvature, profile curvature, topographic wetness index (TWI), distance from rivers, faults, and roads, land use/cover, and lithology. For modeling purpose, the Genetic Algorithm for the Rule Set Production (GARP) algorithm was applied in order to produce the landslide susceptibility map. Finally, to evaluate the efficacy of the GARP model, receiver operating characteristics curve as well as the Kappa index were employed. Based on these indices, the GARP model predicted the probability of future landslide incidences with the area under the receiver operating characteristics curve (AUC-ROC) values of 0.932, and 0.907 for training and validating datasets, respectively. In addition, Kappa values for the training and validating datasets were computed as 0.775, and 0.716, respectively. Thus, it can be concluded that the GARP algorithm can be a new but effective method for generating landslide susceptibility maps (LSMs). Furthermore, higher contribution of the lithology, distance from roads, and distance from faults was observed, while lower contribution was attributed to soil, profile curvature, and TWI factors. The introduced methodology in this paper can be suggested for other areas with similar topographical and hydrogeological characteristics for land use planning and reducing the landslide damages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号