首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 140 毫秒
1.
《全球定位系统》2014,(6):99-99
近日,IGS(InternationalGNSSService,国际GNSS服务组织)主席正式通知武汉大学卫星导航定位技术研究中心建设其全球第五个IGS数据中心。该数据中心将向全球卫星导航定位用户免费提供国际IGS基准站观测数据、GNSS卫星精密轨道和精密钟差和地球自转参数等数据服务。武汉大学IGS数据中心的建设,将改变我国卫星导航用户完全依赖于国外数据中心的现状,使我国用户下载GNSS数据的速度从过去数十KB每秒提升至数MB每秒。  相似文献   

2.
倪蓉蓉  王庆  潘树国  赵兴旺 《测绘科学》2011,36(6):278-280,288
近年来,GPS的应用日益广泛,在精密单点定位解算、GPS基线解算、站坐标解算、地球电离层研究实验等应用中,需要大量IGS站点观测数据及精密产品信息,下载工作繁琐且耗时。为了提高IGS数据下载效率,实现智能化下载,作者研制了基于WinInet API的IGS服务数据专用FTP客户端。实验测试结果表明:该软件操作简单,能快速准确地实现批量下载功能。  相似文献   

3.
通过全球导航卫星(GNSS)系统获取对流层天顶延迟对于气象和电波折射修正具有重要应用价值。利用自主研发的静态精密单点定位软件CRPPP,基于国际GNSS地球动力学服务局(IGS)发布的北斗系统(BDS)精密星历和精密钟差,给出了BDS估算天顶延迟结果。以IGS发布的全球定位系统(GPS)结果为参考对比,BDS估算天顶延迟结果平均偏差优于5mm,均方根误差(rms)优于2.3cm.同时,给出了西沙地区GPS与BDS估计结果,结果表明:利用北斗系统估计的对流层天顶延迟精度与GPS相当。  相似文献   

4.
GNSS数据量呈指数级趋势增长,Hadoop分布式文件系统(HDFS)解决了海量GNSS数据存储瓶颈的难题,却面临内存占用多、文件相关性差和缺乏优化机制的问题。针对HDFS处理海量GNSS小文件效率不高的问题,结合GNSS数据类型、特点以及存储过程,提出了一种新的GNSS小文件云存储方法,优化了GNSS小文件的写入、读取、添加和删除策略。该方法分别按观测文件和解算成果的类型进行合并,对合并后的文件构建压缩Trie树索引,索引切分后,根据匹配算法分布式地存储索引块。实验采用国际GNSS服务(IGS)28 d的数据和产品进行云存储优化。结果表明,该方法降低了各节点内存消耗,提高了海量GNSS小文件写入、读取和删除的效率,实现了对海量GNSS小文件的高效云存储。  相似文献   

5.
实时卫星钟差(satellite clock bias,SCB)的获取是实时精密单点定位(real-time precise point positioning,RTPPP)需要解决的关键问题。给出了国际GNSS服务(International GNSS Service,IGS)所提供的实时服务(real-time service,RTS)钟差产品的修复方法,分析了IGS02、IGS03实时数据流中GPS卫星钟差改正数的稳定性及其精度。同时,从原理上推导证明了钟差一次差分数据符合一次多项式模型,并结合对GPS卫星钟差改正数的分析提出了一种基于一次差分的钟差改正数预报算法,通过与一次多项式模型、二次多项式模型以及灰色模型的预报精度进行对比试验,结果表明,该钟差改正数预报算法预报精度有明显提高,预报30 s的精度达到0.06 ns,可满足实时精密单点定位的要求。  相似文献   

6.
为综合评估单线程、多线程和多协程在全球卫星导航系统(GNSS)数据下载中的性能,以武汉大学国际GNSS服务(IGS)数据中心为下载源,从下载文件的时间跨度和量级大小两个方面对三种方法的下载效果进行对比分析.结果表明:在中小型文件下载过程中多线程的优势大于单线程和多协程;在大型文件下载中,多协程的下载效果略优于多线程,且都相较单线程性能更佳;由于GNSS数据普遍是中小型文件,所以多线程更适用于GNSS数据下载工作.  相似文献   

7.
地球自转参数(ERP)是卫星精密定轨中联系天球坐标系与地球坐标系的必要参数,是国际GNSS服务组织(IGS)和国际GNSS监测评估系统(iGMAS)分析中心的重要产品。为了提高中国测绘科学研究院分析中心(CGS)的线性模型预报精度,本文研究了最小二乘(LS)和自回归模型(AR)组合的超短期预报最优方法;通过不同周期数据确定最佳预报时长,利用LS+AR模型进行超短期预报,并通过IGS和iGMAS与线性模型产品对比。结果表明:利用8 d(时段)数据进行超短期预报最优;LS+AR模型预报精度明显优于LS模型;LS+AR的超短期预报方法优于分析中心的线性预报方法;EOP的PMX和PMY分量利用时段数据预报、LOD利用天数据预报精度更高。本文超短期预报方法能够提高ERP预报精度,为IGS或iGMAS分析中心的ERP预报提供了一定的参考意义。  相似文献   

8.
介绍了目前国际全球定位系统服务(IGS)组织提供的实时精密轨道和精密钟差改正系数(ROCC)的基本参数以及能够进行实时精密单点定位软件(BNC)(即BKG Ntrip Client,由BKG开发的一款用于实时同步接收、解码及转换的GNSS数据流管理软件)。选取了25个全球IGS跟踪站,并基于BNC软件分析了IGS提供的15种ROCC产品对测站实时精密单点定位精度与收敛性的影响。实验结果表明:采用BNC软件,15种ROCC产品均能在平均15min的时间收敛,并且在N、E方向达到6~8cm,U方向10~20cm的定位精度;且不同ROCC产品其收敛时间和定位精度都存在一定的差异。  相似文献   

9.
全球卫星导航系统(GNSS)的持续完善及其在多领域内的大量应用,拓展了国际GNSS服务组织(IGS)连续监测站的服务领域,从而提升了对其观测数据的质量要求,因此有必要对大范围内IGS站点卫星观测数据质量进行分析.结合目前各GNSS的全球覆盖程度以及发展成熟度,本文以GPS为对象,对全球范围IGS站点该系统的原始观测数据质量进行评价,包括数据所受多径影响、数据观测完整程度以及数据中跳变比例三方面,得出了关于IGS站点GPS数据质量的分析结果,该结果可为地学研究及工程应用过程中站点的选取作参考.   相似文献   

10.
IGS提供实时的预报产品—超快速精密星历IGU,这种超快速星历为实时精密单点定位的实现提供了实时的高精度数据支撑。由于IGU存储在网络服务器中,设计实现IGS数据文件实时获取的下载程序是实时精密单点定位的基础。通过在C++Builder 2007平台上利用Indy控件设计编译了IGS数据文件的下载程序并进行实验。实验表明:该程序支持多线程并发和断点续传功能,可以实现IGS数据文件的实时下载。  相似文献   

11.
Global navigation satellite systems (GNSS) have been widely used to monitor variations in the earth’s ionosphere by estimating total electron content (TEC) using dual-frequency observations. Differential code biases (DCBs) are one of the important error sources in estimating precise TEC from GNSS data. The International GNSS Service (IGS) Analysis Centers have routinely provided DCB estimates for GNSS satellites and IGS ground receivers, but the DCBs for regional and local network receivers are not provided. Furthermore, the DCB values of GNSS satellites or receivers are assumed to be constant over 1?day or 1?month, which is not always the case. We describe Matlab code to estimate GNSS satellite and receiver DCBs for time intervals from hours to days; the software is called M_DCB. The DCBs of GNSS satellites and ground receivers are tested and evaluated using data from the IGS GNSS network. The estimates from M_DCB show good agreement with the IGS Analysis Centers with a mean difference of less than 0.7?ns and an RMS of less than 0.4?ns, even for a single station DCB estimate.  相似文献   

12.
GNSS是实时定位导航最重要的方法,精密卫星轨道钟差产品是GNSS高精度服务的前提。国际GNSS服务中心(IGS)及其分析中心长期致力于GNSS数据处理的研究及高精度轨道和钟差产品的提供。GFZ作为分析中心之一,提供GBM多系统快速产品。本文基于2015—2021年GBM提供的精密轨道产品,阐述了数据处理策略,分析了轨道的精度,介绍了非差模糊度固定的原理和对精密定轨的影响。结果表明:GBM快速产品中的GPS轨道精度与IGS后处理精密轨道相比的精度约为11~13 mm,轨道6 h预报精度约为6 cm;GLONASS预报精度约为12 cm,Galileo在该时期的精度均值为10 cm,但是在2016年底以后精度提升到5 cm左右;北斗系统的中轨卫星(medium earth orbit,MEO)在2020年以后预报精度约为10 cm;北斗的静止轨道卫星(geostationary earth orbit,GEO)卫星和QZSS卫星的预报精度在米级;卫星激光测距检核表明,Galileo、GLONASS、BDS-3 MEO卫星轨道精度分别为23、41、47 mm;此外,采用150 d观测值的试验结果表明,采用非差模糊度固定能显著改善MEO卫星轨道精度,对GPS、GLONASS、Galileo、BDS-2和BDS-3的MEO卫星的6 h时预报精度改善率分别为9%~15%、15%~18%、11%~13%、6%~17%和14%~25%。  相似文献   

13.
The International GNSS Service (IGS) is an international activity involving more than 200 participating organisations in over 80 countries with a track record of one and a half decades of successful operations. The IGS is a service of the International Association of Geodesy (IAG). It primarily supports scientific research based on highly precise and accurate Earth observations using the technologies of Global Navigation Satellite Systems (GNSS), primarily the US Global Positioning System (GPS). The mission of the IGS is “to provide the highest-quality GNSS data and products in support of the terrestrial reference frame, Earth rotation, Earth observation and research, positioning, navigation and timing and other applications that benefit society”. The IGS will continue to support the IAG’s initiative to coordinate cross-technique global geodesy for the next decade, via the development of the Global Geodetic Observing System (GGOS), which focuses on the needs of global geodesy at the mm-level. IGS activities are fundamental to scientific disciplines related to climate, weather, sea level change, and space weather. The IGS also supports many other applications, including precise navigation, machine automation, and surveying and mapping. This article discusses the IGS Strategic Plan and future directions of the globally-coordinated ~400 station IGS network, tracking data and information products, and outlines the scope of a few of its numerous working groups and pilot projects as the world anticipates a truly multi-system GNSS in the coming decade.  相似文献   

14.
卫星轨道、钟差以及测站坐标等是全球导航卫星系统定位(global navigation satellite system,GNSS)的核心参数,构成了卫星导航系统数据处理的时空基准。通过比较国际GNSS服务(International GNSS Service,IGS)不同数据分析中心提供的GNSS精密时空产品发现,各分析中心的轨道、钟差存在明显差异,并且轨道、钟差的相对偏差存在很强的相关性。针对该问题,讨论了GNSS卫星轨道、钟差的相关性问题,分析了轨道、钟差相对偏差的周期特性,并提取了周期项模型参数;建立改正模型,提高了不同分析中心产品的一致性;对时空基准周期性误差的原因进行了分析,并以参数降相关为出发点,对GNSS时空基准精度提升的方法提出了建议。  相似文献   

15.
几种精密卫星钟差加密方法的比较与分析   总被引:1,自引:0,他引:1  
张清华  隋立芬  牟忠凯 《测绘工程》2010,19(2):65-67,74
卫星钟差是影响GPS高精度单点定位的一个重要因素,通过分析几种加密GPS精密卫星钟差的方法,将加密结果与GFZ(German Research Centre for Geosciences)提供的数据进行比较,并通过精度分析,得出分段线性插值法是加密GPS精密卫星钟差一种较为可靠的方法。  相似文献   

16.
An enhanced strategy for GNSS data processing of massive networks   总被引:2,自引:1,他引:1  
Although the computational burden of global navigation satellite systems (GNSS) data processing is nowadays already a big challenge, especially for huge networks, integrated processing of denser networks with data of multi-GNSS and multi-frequency is desired in the expectation of more accurate and reliable products. Based on the concept of carrier range, in this study, the precise point positioning with integer ambiguity resolution is engaged to obtain the integer ambiguities for converting carrier phases to carrier ranges. With such carrier ranges and pseudo-ranges, rigorous integrated processing is realized computational efficiently for the orbit and clock estimation using massive networks. The strategy is validated in terms of computational efficiency and product quality using data of the IGS network with about 460 stations. The experimental validation shows that the computation time of the new strategy increases gradually with the number of stations. It takes about 14 min for precise orbit and clock determination with 460 stations, while the current strategy needs about 82 min. The overlapping orbit RMS is reduced from 27.6 mm with 100 stations to 24.8 mm using the proposed strategy, and the RMS could be further reduced to 23.2 mm by including all 460 stations. Therefore, the new strategy could be applied to massive networks of multi-GNSS and multi-frequency receivers and possibly to achieve GNSS data products of higher quality.  相似文献   

17.
GNSS卫星精密轨道是高精度GNSS应用的基础与前提,GNSS卫星精密定轨技术也一直都是卫星导航领域的研究重点与热点。本文首先介绍了GNSS星座与跟踪数据概况,梳理了精密定轨函数模型、动力学模型及随机模型构建过程中的关键问题,归纳了低轨星载观测和星间链路观测等多源数据增强GNSS精密定轨的研究进展;然后,从应用的角度总结了当前GNSS精密轨道产品的基本状态,并进行了精度评估;最后,讨论了GNSS精密定轨在大网快速解算、多层次观测数据融合、太阳光压模型精化及高精度实时定轨等方面所面临的挑战,并展望了低轨星座、光钟、激光链路等新技术给GNSS精密定轨带来的机遇。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号